-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
95 lines (77 loc) · 3.43 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import pybullet as p
import pybullet_data
def getJointStates(robot):
joint_states = p.getJointStates(robot, range(p.getNumJoints(robot)))
joint_positions = [state[0] for state in joint_states]
joint_velocities = [state[1] for state in joint_states]
joint_torques = [state[3] for state in joint_states]
return joint_positions, joint_velocities, joint_torques
def getMotorJointStates(robot):
joint_states = p.getJointStates(robot, range(p.getNumJoints(robot)))
joint_infos = [p.getJointInfo(robot, i) for i in range(p.getNumJoints(robot))]
joint_states = [j for j, i in zip(joint_states, joint_infos) if i[3] > -1]
joint_positions = [state[0] for state in joint_states]
joint_velocities = [state[1] for state in joint_states]
joint_torques = [state[3] for state in joint_states]
return joint_positions, joint_velocities, joint_torques
def setJointPosition(robot, position, kp=1.0, kv=0.3):
num_joints = p.getNumJoints(robot)
zero_vec = [0.0] * num_joints
if len(position) == num_joints:
p.setJointMotorControlArray(robot,
range(num_joints),
p.POSITION_CONTROL,
targetPositions=position,
targetVelocities=zero_vec,
positionGains=[kp] * num_joints,
velocityGains=[kv] * num_joints)
else:
print("Not setting torque. "
"Expected torque vector of "
"length {}, got {}".format(num_joints, len(torque)))
def multiplyJacobian(robot, jacobian, vector):
result = [0.0, 0.0, 0.0]
i = 0
for c in range(len(vector)):
if p.getJointInfo(robot, c)[3] > -1:
for r in range(3):
result[r] += jacobian[r][i] * vector[c]
i += 1
return result
clid = p.connect(p.SHARED_MEMORY)
if (clid < 0):
p.connect(p.DIRECT)
time_step = 0.001
gravity_constant = -9.81
p.resetSimulation()
p.setTimeStep(time_step)
p.setGravity(0.0, 0.0, gravity_constant)
p.loadURDF("plane.urdf")
kukaId = p.loadURDF("TwoJointRobot_w_fixedJoints.urdf", useFixedBase=True)
p.resetBasePositionAndOrientation(kukaId, [0, 0, 0], [0, 0, 0, 1])
numJoints = p.getNumJoints(kukaId)
kukaEndEffectorIndex = numJoints - 1
# Set a joint target for the position control and step the sim.
setJointPosition(kukaId, [0.1] * numJoints)
p.stepSimulation()
# Get the joint and link state directly from Bullet.
pos, vel, torq = getJointStates(kukaId)
mpos, mvel, mtorq = getMotorJointStates(kukaId)
result = p.getLinkState(kukaId,
kukaEndEffectorIndex,
computeLinkVelocity=1,
computeForwardKinematics=1)
link_trn, link_rot, com_trn, com_rot, frame_pos, frame_rot, link_vt, link_vr = result
# Get the Jacobians for the CoM of the end-effector link.
# Note that in this example com_rot = identity, and we would need to use com_rot.T * com_trn.
# The localPosition is always defined in terms of the link frame coordinates.
zero_vec = [0.0] * len(mpos)
jac_t, jac_r = p.calculateJacobian(kukaId, kukaEndEffectorIndex, com_trn, mpos, zero_vec, zero_vec)
print("Link linear velocity of CoM from getLinkState:")
print(link_vt)
print("Link linear velocity of CoM from linearJacobian * q_dot:")
print(multiplyJacobian(kukaId, jac_t, vel))
print("Link angular velocity of CoM from getLinkState:")
print(link_vr)
print("Link angular velocity of CoM from angularJacobian * q_dot:")
print(multiplyJacobian(kukaId, jac_r, vel))