Skip to content

Code for running Joint Language Understanding Variational Autoencoder (JLUVA)

License

Notifications You must be signed in to change notification settings

AtmaHou/ludus-jluva

 
 

Repository files navigation

Getting Started

Setting up the environment

Clone this repository recursively:

git clone https://github.com/kaniblu/ludus-jluva --recursive && cd ludus-jluva

Download and setup GloVe:

cd datasets/glove && bash setup.sh && cd ../..

Install required packages:

pip install -r requirements.txt && pip install -r codebase/requirements.txt

(Optional) Install additional packages as specified in codebase/README.md if required.

Setup environments:

export PATH=$(pwd)/scripts:${PATH}

Create the instance directory:

mkdir instances

Creating and running an experimental instance

Create an experimental instance from the archetype:

instance-create jluva atis-jluva

Configure the dataset option in the instance:

config-set atis-jluva data dataset atis -w

Train a generative model:

instance-run atis-jluva train

Generate NLU corpus using the trained model:

instance-run atis-jluva generate --eidx 97

After above steps, the synthetic corpus (utterances + intents + slot labels) will be generated under instances/atis-jluva with the filenames word.txt, intent.txt, and label.txt. Such corpus improves LU performances when used to augment the existing corpus for training supervised LU models.

About

Code for running Joint Language Understanding Variational Autoencoder (JLUVA)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.1%
  • Shell 1.9%