Skip to content

AvlTreeQL/gunet

 
 

Repository files navigation

PyTorch Graph U-Nets

Created by Hongyang Gao, and Shuiwang Ji at Texas A&M University.

About

PyTorch implementation of Graph U-Nets. Check https://arxiv.org/abs/1905.05178 for more information.

Installation

The implementation is based on the pytorch version of DGCNN.

unzip pytorch_structure2vec-master.zip

Then, under the "pytorch_structure2vec-master/s2vlib/" directory, type

make -j4

to build the necessary c++ backend.

Type

./run_GUNet.sh DATA FOLD

to run on dataset using fold number (1-10). You can run ./run_GUNet.sh DD 0 to run on DD dataset with 10-fold cross validation.

Code

The detail implementation is in ops.py

Datasets

Check the "data/README.md" for the format.

Reference

If you find the code useful, please cite our paper:

@inproceedings{gao2019graph,
  title={Graph {U-nets}},
  author={Gao, Hongyang and Ji, Shuiwang},
  booktitle={Proceedings of The 36th International Conference on Machine Learning},
  year={2019},
}

About

Pytorch implementation of Graph U-Nets (ICML19)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 69.1%
  • C++ 22.9%
  • Shell 3.2%
  • Makefile 2.1%
  • C 1.4%
  • MATLAB 1.3%