Skip to content

Model calibration relevant (meta )data

Jörg F. Unger edited this page Apr 21, 2021 · 5 revisions

exp. data (model error?)

  • sensors (with spatial positions, correlations, sensor accuracy)
  • setup (e.g. compression test on concrete, tensile test of steel)
    • material
    • geometry
  • access information (publicly available?)
  • store query, version of data
  • store result of query ?
  • preprocessing steps, pipeline (where to put this, workflow?)

model (forward)

  • parameters (values or just types?, (deterministic, stochastich, inference?)
  • simulation procedure
    • FEM, CFD,
      • constititutive model (plasticity, fatigue)
      • discretization in space and time
      • inital / boundary conditions
  • software
    • url/git
    • version
    • maintainer, company

inference

  • parameters (initial values, priors)
  • likelihood
    • model error
    • noise model
  • inference scheme (MCMC, Gibbs, Variational Bayes, deterministic)
    • parameters (num_samples, burn_in)

results

  • (posterior) parameters (samples, distribution - common information)
  • applicability of model / model parameters (e.g. temperature, strain range, ...) Difficult to describe?
  • metrics describing the quality of model calibration
    • model evidence
    • average/root mean square error (different experiments/sensor types)
  • similar results with other models (e.g. Bayes factor)

How was the complete workflow setup (computational workflow?)