-
Notifications
You must be signed in to change notification settings - Fork 78
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' of https://github.com/BUPT-GAMMA/GammaGL
- Loading branch information
Showing
3 changed files
with
210 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,42 @@ | ||
import os | ||
import os.path as osp | ||
import os | ||
import tensorlayerx as tlx | ||
|
||
import numpy as np | ||
import scipy.sparse as sp | ||
from gammagl.data import extract_zip, download_url, InMemoryDataset, Graph | ||
from gammagl.sparse.coalesce import coalesce | ||
import pickle | ||
from sklearn.model_selection import train_test_split | ||
import torch | ||
class Cora(InMemoryDataset): | ||
|
||
def __init__(self, db_dataset): | ||
self.db_dataset = db_dataset | ||
self.graph = self.processCora() | ||
|
||
def processCora(self): | ||
data = self.db_dataset | ||
x = tlx.convert_to_tensor(data['X_dict']['node'], dtype=tlx.float32) | ||
y = tlx.convert_to_tensor(data['Y_dict']['node'], dtype=tlx.int64) | ||
|
||
edge = data['edge_index_dict']['edge'] | ||
data = Graph(edge_index=edge, x=x, y=y) | ||
|
||
|
||
#split dataset | ||
X_num = self.db_dataset['X_dict']['node'].shape[0] | ||
X_ids = np.arange(X_num) | ||
X_train_val, X_test = train_test_split(X_ids, test_size=0.2, random_state=42) | ||
X_train, X_val = train_test_split(X_train_val, test_size=0.25, random_state=42) | ||
idx_train = range(140) | ||
idx_val = range(200, 500) | ||
idx_test = range(500, 1500) | ||
train_idx = tlx.convert_to_tensor(idx_train) | ||
test_idx = tlx.convert_to_tensor(idx_val) | ||
val_idx = tlx.convert_to_tensor(idx_test) | ||
data.train_idx = train_idx | ||
data.test_idx= test_idx | ||
data.val_idx = val_idx | ||
return data |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,135 @@ | ||
import os | ||
os.environ['TL_BACKEND'] = 'torch' | ||
from gammagl.utils import mask_to_index | ||
from tensorlayerx.model import WithLoss, TrainOneStep | ||
from tqdm import tqdm | ||
from gammagl.datasets import Reddit | ||
import tensorlayerx as tlx | ||
import argparse | ||
from gammagl.loader.neighbor_sampler import NeighborSampler | ||
from gammagl.models import GraphSAGE_Sample_Model | ||
from gammagl.datasets import Planetoid | ||
from cora_dataset import Cora | ||
import pickle | ||
from gdbi import NodeExportConfig, EdgeExportConfig, Neo4jInterface | ||
|
||
class SemiSpvzLoss(WithLoss): | ||
def __init__(self, net, loss_fn): | ||
super(SemiSpvzLoss, self).__init__(backbone=net, loss_fn=loss_fn) | ||
|
||
def forward(self, data, y): | ||
logits = self.backbone_network(data['x'], data['subgs']) | ||
loss = self._loss_fn(logits, tlx.gather(data['y'], data['dst_node'])) | ||
return loss | ||
|
||
|
||
def calculate_acc(logits, y, metrics): | ||
""" | ||
Args: | ||
logits: node logits | ||
y: node labels | ||
metrics: tensorlayerx.metrics | ||
Returns: | ||
rst | ||
""" | ||
|
||
metrics.update(logits, y) | ||
rst = metrics.result() | ||
metrics.reset() | ||
return rst | ||
|
||
|
||
def main(args): | ||
# load cora dataset | ||
graph_address = '' | ||
user_name = '' | ||
passward = '' | ||
node_export_config = [NodeExportConfig('node', ['attribute'], ['label'])] | ||
edge_export_config = [EdgeExportConfig('edge', ('node', 'node'))] | ||
graph_database = Neo4jInterface() | ||
conn = graph_database.GraphDBConnection(graph_address=graph_address, user_name=user_name, password=passward) | ||
db_dataset = graph_database.get_graph(conn,"cora",node_export_config,edge_export_config) | ||
|
||
dataset = Cora(db_dataset) | ||
graph = dataset.graph | ||
|
||
idx_train = range(140) | ||
idx_val = range(200, 500) | ||
idx_test = range(500, 1500) | ||
train_idx = tlx.convert_to_tensor(idx_train) | ||
test_idx = tlx.convert_to_tensor(idx_val) | ||
val_idx = tlx.convert_to_tensor(idx_test) | ||
num_classes = 7 | ||
|
||
train_loader = NeighborSampler(edge_index=graph.edge_index, | ||
node_idx=train_idx, | ||
sample_lists=[25, 10], batch_size=2048, shuffle=True, num_workers=0) | ||
|
||
val_loader = NeighborSampler(edge_index=graph.edge_index, | ||
node_idx=val_idx, | ||
sample_lists=[-1], batch_size=2048 * 2, shuffle=False, num_workers=0) | ||
test_loader = NeighborSampler(edge_index=graph.edge_index, | ||
node_idx=test_idx, | ||
sample_lists=[-1], batch_size=2048 * 2, shuffle=False, num_workers=0) | ||
|
||
x = tlx.convert_to_tensor(graph.x) | ||
y = tlx.convert_to_tensor(graph.y, dtype=tlx.int64) | ||
|
||
net = GraphSAGE_Sample_Model(in_feat=graph.num_node_features, | ||
hid_feat=args.hidden_dim, | ||
out_feat=num_classes, | ||
drop_rate=args.drop_rate, | ||
num_layers=args.num_layers) | ||
optimizer = tlx.optimizers.Adam(args.lr) | ||
metrics = tlx.metrics.Accuracy() | ||
train_weights = net.trainable_weights | ||
|
||
loss_func = SemiSpvzLoss(net, tlx.losses.softmax_cross_entropy_with_logits) | ||
train_one_step = TrainOneStep(loss_func, optimizer, train_weights) | ||
|
||
for epoch in range(args.n_epoch): | ||
pbar = tqdm(total=int(len(train_loader.dataset))) | ||
pbar.set_description(f'Epoch {epoch:02d}') | ||
for dst_node, n_id, adjs in train_loader: | ||
net.set_train() | ||
# input : sampled subgraphs, sampled node's feat | ||
data = {"x": tlx.gather(x, n_id), | ||
"y": y, | ||
"dst_node": dst_node, | ||
"subgs": adjs} | ||
# label is not used | ||
train_loss = train_one_step(data, tlx.convert_to_tensor([0])) | ||
pbar.update(len(dst_node)) | ||
print("Epoch [{:0>3d}] ".format(epoch + 1) + " train loss: {:.4f}".format(train_loss.item())) | ||
|
||
logits = net.inference(x, val_loader, data['x']) | ||
if tlx.BACKEND == 'torch': | ||
val_idx = val_idx.to(data['x'].device) | ||
val_logits = tlx.gather(logits, val_idx) | ||
val_y = tlx.gather(data['y'], val_idx) | ||
val_acc = calculate_acc(val_logits, val_y, metrics) | ||
|
||
logits = net.inference(x, test_loader, data['x']) | ||
test_logits = tlx.gather(logits, test_idx) | ||
test_y = tlx.gather(data['y'], test_idx) | ||
test_acc = calculate_acc(test_logits, test_y, metrics) | ||
|
||
print("val acc: {:.4f} || test acc{:.4f}".format(val_acc, test_acc)) | ||
|
||
|
||
if __name__ == '__main__': | ||
# parameters setting | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--lr", type=float, default=0.005, help="learnin rate") | ||
parser.add_argument("--n_epoch", type=int, default=500, help="number of epoch") | ||
parser.add_argument("--hidden_dim", type=int, default=512, help="dimention of hidden layers") | ||
parser.add_argument("--drop_rate", type=float, default=0.8, help="drop_rate") | ||
parser.add_argument("--num_layers", type=int, default=2) | ||
parser.add_argument("--l2_coef", type=float, default=0., help="l2 loss coeficient") | ||
parser.add_argument('--dataset', type=str, default='cora', help='dataset') | ||
parser.add_argument("--dataset_path", type=str, default=r'', help="path to save dataset") | ||
# parser.add_argument("--best_model_path", type=str, default=r'./', help="path to save best model") | ||
args = parser.parse_args() | ||
|
||
main(args) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
# Graph Database Interface Example | ||
|
||
|
||
|
||
## Install gdbi | ||
```bash | ||
pip install git+https://github.com/xy-Ji/gdbi.git | ||
``` | ||
gdbi implements 4 graph database interfaces. You can use these interfaces to operate the graph database and retrieve specified dataset from the graph database. | ||
|
||
gdbi link: [https://github.com/xy-Ji/gdbi](https://github.com/xy-Ji/gdbi) | ||
|
||
## Example | ||
```python | ||
from gdbi import NodeExportConfig, EdgeExportConfig, Neo4jInterface, NebulaInterface | ||
|
||
node_export_config = list(NodeExportConfig(labelname, x_property_names, y_property_names)) | ||
edge_export_config = list(EdgeExportConfig(labelname, src_dst_label, x_property_names, y_property_names)) | ||
|
||
# neo4j | ||
graph_database = Neo4jInterface() | ||
|
||
# nebula | ||
graph_database = NebulaInterface() | ||
|
||
conn = graph_database.GraphDBConnection(graph_address, user_name, password) | ||
graph = graph_database.get_graph(conn, graph_name, node_export_config, edge_export_config) | ||
``` | ||
|
||
**Run example** | ||
```bash | ||
TL_BACKEND=torch python cora_sage.py --dataset cora --n_epoch 500 --lr 0.005 --hidden_dim 512 --drop_rate 0.8 | ||
``` |