Skip to content

Commit

Permalink
Merge pull request #218 from Ying-1106/main
Browse files Browse the repository at this point in the history
add  dataset from Neo4j
  • Loading branch information
lazishu2000 authored Feb 6, 2024
2 parents 8abf8fa + dc20078 commit 21279c5
Show file tree
Hide file tree
Showing 9 changed files with 244 additions and 7 deletions.
47 changes: 45 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -169,14 +169,30 @@ cd OpenHGNN
pip install .
```



**5. 安装 gdbi(可选):**

- 安装gdbi
```bash
pip install git+https://github.com/xy-Ji/gdbi.git
```

- 安装图数据库
```bash
pip install neo4j==5.16.0
pip install nebula3-python==3.4.0
```


#### 在已有的评测上运行已有的基线模型 [数据集](./openhgnn/dataset/#Dataset)

```bash
python main.py -m model_name -d dataset_name -t task_name -g 0 --use_best_config --load_from_pretrained
python main.py -m model_name -d dataset_name -t task_name -g 0 --use_best_config --load_from_pretrained
```

使用方法: main.py [-h] [--model MODEL] [--task TASK] [--dataset DATASET]
[--gpu GPU] [--use_best_config]
[--gpu GPU] [--use_best_config][--use_database]

*可选参数*:

Expand All @@ -194,6 +210,8 @@ python main.py -m model_name -d dataset_name -t task_name -g 0 --use_best_config

``--load_from_pretrained`` 从默认检查点加载模型。

``--use_database`` 从数据库加载数据集

示例:

```bash
Expand All @@ -204,6 +222,7 @@ python main.py -m GTN -d imdb4GTN -t node_classification -g 0 --use_best_config

请参考 [文档](https://openhgnn.readthedocs.io/en/latest/index.html) 了解更多的基础和进阶的使用方法。


#### 使用TensorBoard可视化训练结果
```bash
tensorboard --logdir=./openhgnn/output/{model_name}/
Expand All @@ -212,8 +231,32 @@ tensorboard --logdir=./openhgnn/output/{model_name}/
```bash
tensorboard --logdir=./openhgnn/output/RGCN/
```

**提示**:需要先运行一次你想要可视化的模型,才能用以上命令可视化结果。

#### 使用gdbi访问数据库中的标准图数据
以neo4j数据库和imdb数据集为例
- 构造图数据集的csv文件(节点级:A.csv,连接级:A_P.csv)
- 导入csv文件到图数据库中
```bash
LOAD CSV WITH HEADERS FROM "file:///data.csv" AS row
CREATE (:graphname_labelname {ID: row.ID, ... });
```
- 在config.py文件中添加访问图数据库所需的用户信息
```python
self.graph_address = [graph_address]
self.user_name = [user_name]
self.password = [password]
```

- 示例:

```bash
python main.py -m MAGNN -d imdb4MAGNN -t node_classification -g 0 --use_best_config --use_database
```



## [模型](./openhgnn/models/#Model)

### 特定任务下支持的模型
Expand Down
47 changes: 46 additions & 1 deletion README_EN.md
Original file line number Diff line number Diff line change
Expand Up @@ -171,14 +171,32 @@ cd OpenHGNN
pip install .
```


**5. Install gdbi(Optional):**

- install gdbi from git
```bash
pip install git+https://github.com/xy-Ji/gdbi.git
```

- install graph database from pypi
```bash
pip install neo4j==5.16.0
pip install nebula3-python==3.4.0
```





#### Running an existing baseline model on an existing benchmark [dataset](../openhgnn/dataset/#Dataset)

```bash
python main.py -m model_name -d dataset_name -t task_name -g 0 --use_best_config --load_from_pretrained
```

usage: main.py [-h] [--model MODEL] [--task TASK] [--dataset DATASET]
[--gpu GPU] [--use_best_config]
[--gpu GPU] [--use_best_config][--use_database]

*optional arguments*:

Expand All @@ -198,6 +216,8 @@ will override the parameter in config.ini.

``--load_from_pretrained`` will load the model from a default checkpoint.

``--use_database`` get dataset from database

e.g.:

```bash
Expand All @@ -218,6 +238,31 @@ tensorboard --logdir=./openhgnn/output/RGCN/
```
**Note**: To visualize results, you need to train the model first.


#### Use gdbi to get grpah dataset
take neo4j and imdb dataset for example
- construct csv file for dataset(node-level:A.csv,edge-level:A_P.csv)
- import csv file to database
```bash
LOAD CSV WITH HEADERS FROM "file:///data.csv" AS row
CREATE (:graphname_labelname {ID: row.ID, ... });
```
- add user information to access database in config.py file
```python
self.graph_address = [graph_address]
self.user_name = [user_name]
self.password = [password]
```

- e.g.:

```bash
python main.py -m MAGNN -d imdb4MAGNN -t node_classification -g 0 --use_best_config --use_database
```




## [Models](../openhgnn/models/#Model)

### Supported Models with specific task
Expand Down
1 change: 1 addition & 0 deletions main.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@
parser.add_argument('--gpu', '-g', default='-1', type=int, help='-1 means cpu')
parser.add_argument('--use_best_config', action='store_true', help='will load utils.best_config')
parser.add_argument('--load_from_pretrained', action='store_true', help='load model from the checkpoint')
parser.add_argument('--use_database',action='store_true',help = 'use database')
args = parser.parse_args()

experiment = Experiment(model=args.model, dataset=args.dataset, task=args.task, gpu=args.gpu,
Expand Down
5 changes: 5 additions & 0 deletions openhgnn/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -327,6 +327,11 @@ def __init__(self, file_path, model, dataset, task, gpu):
self.ff_layer = conf.getint('NARS', 'ff_layer')

elif self.model_name == 'MAGNN':

self.graph_address = ''
self.user_name = ''
self.password = ''

self.lr = conf.getfloat("MAGNN", "learning_rate")
self.weight_decay = conf.getfloat("MAGNN", "weight_decay")
self.seed = conf.getint("MAGNN", "seed")
Expand Down
16 changes: 14 additions & 2 deletions openhgnn/dataset/NodeClassificationDataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
from ogb.nodeproppred import DglNodePropPredDataset
from . import load_acm_raw
from . import BaseDataset, register_dataset
from . import AcademicDataset, HGBDataset, OHGBDataset
from . import AcademicDataset, HGBDataset, OHGBDataset,IMDB4MAGNN_Dataset
from .utils import sparse_mx_to_torch_sparse_tensor
from ..utils import add_reverse_edges

Expand Down Expand Up @@ -181,8 +181,15 @@ class HIN_NodeClassification(NodeClassificationDataset):

def __init__(self, dataset_name, *args, **kwargs):
super(HIN_NodeClassification, self).__init__(*args, **kwargs)

if 'args' in kwargs:
self.args = kwargs['args']
else:
self.args = None

self.g, self.category, self.num_classes = self.load_HIN(dataset_name)


def load_HIN(self, name_dataset):
if name_dataset == 'demo_graph':
data_path = './openhgnn/dataset/demo_graph.bin'
Expand Down Expand Up @@ -211,7 +218,12 @@ def load_HIN(self, name_dataset):
self.in_dim = g.ndata['h'][category].shape[1]

elif name_dataset == 'imdb4MAGNN':
dataset = AcademicDataset(name='imdb4MAGNN', raw_dir='')

if self.args.use_database == True:
dataset = IMDB4MAGNN_Dataset(name='imdb4MAGNN',args = self.args)
else:
dataset = AcademicDataset(name='imdb4MAGNN', raw_dir='')

category = 'M'
g = dataset[0].long()
num_classes = 3
Expand Down
6 changes: 5 additions & 1 deletion openhgnn/dataset/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
from dgl.data import DGLDataset
from .base_dataset import BaseDataset
from .utils import load_acm, load_acm_raw, generate_random_hg
from .academic_graph import AcademicDataset
from .academic_graph import AcademicDataset,IMDB4MAGNN_Dataset
from .hgb_dataset import HGBDataset
from .ohgb_dataset import OHGBDataset
from .gtn_dataset import *
Expand Down Expand Up @@ -115,6 +115,10 @@ def build_dataset(dataset, task, *args, **kwargs):
'Book-Crossing', 'amazon4SLICE', 'MTWM', 'HNE-PubMed', 'HGBl-ACM', 'HGBl-DBLP', 'HGBl-IMDB',
'amazon', 'yelp4HGSL']:
_dataset = 'hin_' + task
elif dataset in ['imdb4MAGNN']:
_dataset = 'hin_' + task
return DATASET_REGISTRY[_dataset](dataset, logger=kwargs['logger'],
args = kwargs['args'] )
elif dataset in ohgbn_datasets + ohgbl_datasets:
_dataset = 'ohgb_' + task
elif dataset in ['ogbn-mag']:
Expand Down
124 changes: 124 additions & 0 deletions openhgnn/dataset/academic_graph.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,130 @@
import torch as th



# get dataset from database
class IMDB4MAGNN_Dataset(DGLDataset):

def __init__(self, name, args, raw_dir=None, force_reload=False, verbose=True):
assert name in ['imdb4MAGNN', ]

self.args = args
super(IMDB4MAGNN_Dataset, self).__init__(name=name,
url=None,
raw_dir=None,
force_reload=force_reload,
verbose=verbose)


def download(self):

from gdbi import NodeExportConfig, EdgeExportConfig, Neo4jInterface, NebulaInterface
node_export_config = [
NodeExportConfig('A', ['attribute'] ),
NodeExportConfig('M', ['attribute'], ['label']),
NodeExportConfig('D', ['attribute'])
]

edge_export_config = [
EdgeExportConfig('A_M', ('A','M')),
EdgeExportConfig('M_A', ('M','A')),
EdgeExportConfig('M_D', ('M','D')),
EdgeExportConfig('D_M', ('D','M'))
]

# neo4j
graph_database = Neo4jInterface()

# # nebula
# graph_database = NebulaInterface()

graph_address = self.args.graph_address
user_name = self.args.user_name
password = self.args.password

conn = graph_database.GraphDBConnection(graph_address, user_name, password)
self.graph = graph_database.get_graph(conn, 'imdb4MAGNN', node_export_config, edge_export_config)




def process(self):

graph = self.graph
cano_edges = {}
for edge_type in graph['edge_index_dict'].keys(): # 'A_M'
src_type = edge_type[0] # A
dst_type = edge_type[-1] # M
edge_type_2 = src_type + '-' + dst_type # A-M

cano_edge_type = (src_type,edge_type_2,dst_type) # ('A','A-M','M')
u,v = graph['edge_index_dict'][edge_type][0] ,graph['edge_index_dict'][edge_type][1]

cano_edges[cano_edge_type] = (u,v)



hg = dgl.heterograph(cano_edges)

for node_type in graph['X_dict'].keys() :
hg.nodes[node_type].data['h'] = graph['X_dict'][node_type]
if node_type == 'M':
hg.nodes[node_type].data['labels'] = graph['Y_dict'][node_type]

import torch



num_nodes = 4278
random_indices = torch.randperm(num_nodes)

num_train = 400
num_val = 400
num_test = 3478

train_mask = torch.zeros(num_nodes, dtype=torch.int)
train_mask[random_indices[:num_train]] = 1
val_mask = torch.zeros(num_nodes, dtype=torch.int)
val_mask[random_indices[num_train:num_train+num_val]] = 1
test_mask = torch.zeros(num_nodes, dtype=torch.int)
test_mask[random_indices[num_train+num_val:]] = 1

assert torch.sum(train_mask * val_mask) == 0
assert torch.sum(train_mask * test_mask) == 0
assert torch.sum(val_mask * test_mask) == 0

hg.nodes['M'].data['train_mask'] = train_mask
hg.nodes['M'].data['val_mask'] = val_mask
hg.nodes['M'].data['test_mask'] = test_mask

self._g = hg




def __getitem__(self, idx):
# get one example by index
assert idx == 0, "This dataset has only one graph"
return self._g

def __len__(self):
return 1


def save(self):
pass

def load(self):
pass

def has_cache(self):
pass






class AcademicDataset(DGLDataset):

_prefix = 'https://s3.cn-north-1.amazonaws.com.cn/dgl-data/'
Expand Down
2 changes: 2 additions & 0 deletions openhgnn/experiment.py
Original file line number Diff line number Diff line change
Expand Up @@ -85,13 +85,15 @@ def __init__(self, model, dataset, task,
hpo_trials: int = 100,
output_dir: str = "./openhgnn/output",
conf_path: str = default_conf_path,
use_database:bool = False,
**kwargs):
self.config = Config(file_path=conf_path, model=model, dataset=dataset, task=task, gpu=gpu)
self.config.model = model
self.config.dataset = dataset
self.config.task = task
self.config.gpu = gpu
self.config.use_best_config = use_best_config
self.config.use_database = use_database
# self.config.use_hpo = use_hpo
self.config.load_from_pretrained = load_from_pretrained
self.config.output_dir = os.path.join(output_dir, self.config.model_name)
Expand Down
3 changes: 2 additions & 1 deletion openhgnn/tasks/node_classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,8 @@ class NodeClassification(BaseTask):
def __init__(self, args):
super(NodeClassification, self).__init__()
self.logger = args.logger
self.dataset = build_dataset(args.dataset, 'node_classification', logger=self.logger)
self.dataset = build_dataset(args.dataset, 'node_classification',
logger=self.logger,args = args)
# self.evaluator = Evaluator()
self.logger = args.logger
if hasattr(args, 'validation'):
Expand Down

0 comments on commit 21279c5

Please sign in to comment.