基于Labelme开发的眼底影像标注系统 开发者:chaiwenjun000、Suzakue
该系统的主要功能:
- 为眼底影像选取病变等级。目前支持的有:糖尿病视网膜病变(5个级别)、黄斑水肿病变(3个级别)
- 在眼底影像上勾画并发症区域,并选择并发症标签。目前支持的并发症有:硬性渗出、软性渗出、微血管瘤、视网膜出血
- 不同的并发症区域显示为不同的线条颜色
- 支持模型预标注:先将图片通过深度学习模型得到结果,在这个结果的基础上进行修改
- 云端存储:支持将标注的图片、标注的信息以及生成的json文件存储到云端mysql数据库
使用方法:
-
在labelme文件夹下新建config.json文件,内容包括:
1)"pre_label_ip": 申请模型预标注的ip地址(将眼底图像发送到该地址,服务器运行模型后会返回预标注json)
2)"get_img_ip": 申请裁剪后图片的ip地址(模型预处理时会对图片进行裁剪,我们需要展示裁剪后的图片,否则病症区域的坐标无法与眼底图片一一对应)
3)"token": 5566, 口令字段(通过该字段与服务器进行交互)
4)"cloud_save_ip": 申请云端存储的ip地址(通过该地址将标注后生成的json文件存储到云端)
5)"database_ip": 云端mysql数据库的ip地址
6)"db_name": 云端数据库的名字
7)"username": 数据库登录名
8)"password": 数据库登陆密码
-
若要修改病变级别标签,请修改labelme/flags.txt;若要修改并发症标签,请修改labelme/labels.txt。但对于新增加的字段不支持中英文转化功能。(为贴合模型预处理的结果,我们把json文件设计为英文标签,页面仍然显示中文标签。若新加标签,json文件内将输出该标签的中文形式)
-
在labelme文件夹下,运行python main.py命令
Labelme is a graphical image annotation tool inspired by http://labelme.csail.mit.edu.
It is written in Python and uses Qt for its graphical interface.
Fig 2. VOC dataset example of instance segmentation.
Fig 3. Other examples (semantic segmentation, bbox detection, and classification).
- Image annotation for polygon, rectangle, line and point. (tutorial)
- Image flag annotation for classification and cleaning. (#166)
- Video annotation. (video annotation)
- GUI customization (predefined labels / flags, auto-saving, label validation, etc). (#144)
- Exporting VOC-like dataset for semantic/instance segmentation. (semantic segmentation, instance segmentation)
- Ubuntu / macOS / Windows
- Python2 / Python3
- PyQt4 / PyQt5 / PySide2
There are options:
- Platform agonistic installation: Anaconda, Docker
- Platform specific installation: Ubuntu, macOS, Windows
You need install Anaconda, then run below:
# python2
conda create --name=labelme python=2.7
source activate labelme
# conda install -c conda-forge pyside2
conda install pyqt
pip install labelme
# if you'd like to use the latest version. run below:
# pip install git+https://github.com/wkentaro/labelme.git
# python3
conda create --name=labelme python=3.6
source activate labelme
# conda install -c conda-forge pyside2
# conda install pyqt
pip install pyqt5 # pyqt5 can be installed via pip on python3
pip install labelme
You need install docker, then run below:
wget https://raw.githubusercontent.com/wkentaro/labelme/master/labelme/cli/on_docker.py -O labelme_on_docker
chmod u+x labelme_on_docker
# Maybe you need http://sourabhbajaj.com/blog/2017/02/07/gui-applications-docker-mac/ on macOS
./labelme_on_docker examples/tutorial/apc2016_obj3.jpg -O examples/tutorial/apc2016_obj3.json
./labelme_on_docker examples/semantic_segmentation/data_annotated
# Ubuntu 14.04 / Ubuntu 16.04
# Python2
# sudo apt-get install python-qt4 # PyQt4
sudo apt-get install python-pyqt5 # PyQt5
sudo pip install labelme
# Python3
sudo apt-get install python3-pyqt5 # PyQt5
sudo pip3 install labelme
# macOS Sierra
brew install pyqt # maybe pyqt5
pip install labelme # both python2/3 should work
# or install standalone executable / app
brew install wkentaro/labelme/labelme
brew cask install wkentaro/labelme/labelme
Firstly, follow instruction in Anaconda.
# Pillow 5 causes dll load error on Windows.
# https://github.com/wkentaro/labelme/pull/174
conda install pillow=4.0.0
Run labelme --help
for detail.
The annotations are saved as a JSON file.
labelme # just open gui
# tutorial (single image example)
cd examples/tutorial
labelme apc2016_obj3.jpg # specify image file
labelme apc2016_obj3.jpg -O apc2016_obj3.json # close window after the save
labelme apc2016_obj3.jpg --nodata # not include image data but relative image path in JSON file
labelme apc2016_obj3.jpg \
--labels highland_6539_self_stick_notes,mead_index_cards,kong_air_dog_squeakair_tennis_ball # specify label list
# semantic segmentation example
cd examples/semantic_segmentation
labelme data_annotated/ # Open directory to annotate all images in it
labelme data_annotated/ --labels labels.txt # specify label list with a file
For more advanced usage, please refer to the examples:
- Tutorial (Single Image Example)
- Semantic Segmentation Example
- Instance Segmentation Example
- Video Annotation Example
- How to convert JSON file to numpy array? See examples/tutorial.
- How to load label PNG file? See examples/tutorial.
- How to get annotations for semantic segmentation? See examples/semantic_segmentation.
- How to get annotations for instance segmentation? See examples/instance_segmentation.
pip install hacking pytest pytest-qt
flake8 .
pytest -v tests
git clone https://github.com/wkentaro/labelme.git
cd labelme
# Install anaconda3 and labelme
curl -L https://github.com/wkentaro/dotfiles/raw/master/local/bin/install_anaconda3.sh | bash -s .
source .anaconda3/bin/activate
pip install -e .
Below shows how to build the standalone executable on macOS, Linux and Windows.
Also, there are pre-built executables in
the release section.
# Setup conda
conda create --name labelme python==3.6.0
conda activate labelme
# Build the standalone executable
conda install pyqt
pip install .
pip install pyinstaller
pyinstaller labelme.spec
dist/labelme --version
This repo is the fork of mpitid/pylabelme, whose development has already stopped.