Skip to content

This is an unofficial implementation of ssFPN(pytorch)

License

Notifications You must be signed in to change notification settings

BearCooike/ssFPN-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ssFPN: Scale Sequence (S^2) Feature Based-Feature Pyramid Network for Object Detection

by Hye-Jin Park, Young-Ju Choi, Young-Woon Lee, Byung-Gyu Kim

ssFPN

This is an unofficial implementation of “ssFPN: Scale Sequence (S^2) Feature Based-Feature Pyramid Network for Object Detection

The implementation was only trained and tested on my private dataset due to resource and time issues

My private dataset contains 8w images taken with real-world 1080P cameras, totaling 26 categories.
PS: MultiScale Training is not used on ssFPN because of training memory issues.

Model pre-train epochs mAP.5 mAP.5:.95
Baseline(YoloV5 6.0) yolov5s.pt 150 0.901 0.655
Baseline + SpaceToDepth yolov5s.pt 150 0.901 0.657
Baseline + SpaceToDepth + ssFPN yolov5s.pt 150 0.909 0.674
Model resolution ratio GPU FP16 latency(ms)
Baseline(YoloV5 6.0) 384x640 MX450 15-21
Baseline + SpaceToDepth 384x640 MX450 15-18
Baseline + SpaceToDepth + ssFPN 384x640 MX450 27-30

Special thanks to w13ww for providing the coco2017 test results

Model pre-train epochs mAP.5 mAP.5:.95 AP Small AP Medium AP Large
Baseline(YoloV5 6.0) yolov5s.pt 150 0.574 0.376 0.217 0.423 0.492
Baseline + ssFPN yolov5s.pt 150 0.579(↑0.005) 0.380(↑0.004) 0.234(↑0.017) 0.430(↑0.007) 0.478(↓0.014)
Model GPU FP16 latency(ms)
Baseline(YoloV5 6.0) A100 0.9
Baseline + ssFPN A100 1.3

v5ssFPN

v5ssFPN_coco

About

This is an unofficial implementation of ssFPN(pytorch)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages