Basic usage with standard Gaussian Prior:
python EM.py --algorithm em_orig
Basic usage with bi-modal Gaussian Prior:
python EM.py --algorithm em_bimodal
Run with artificial data:
python EM.py --algorithm em_orig --datapath artificial
Run on binary data:
pip install -r requirements.txt
pip install -e .
python train.py policy=em_sym_bin policy.params.seed=0 data_loader=halu_dialogue_bin
python train.py policy=em_asym_bin policy.params.seed=0 data_loader=halu_dialogue_bin
python train.py policy=majority_vote data_loader=halu_dialogue_bin
Basic usage of EM with Gaussian mixture model (GMM):
python train.py data_loader=halu_dialogue_logit policy=em_gmm
Basic usage of EM original
python train.py data_loader=halu_dialogue_logit policy=em_orig
./train.sh
You need to specify expdir
where the experimental data and model checkpoints will be stored. The first line in this file is to activate the conda environment. Please replace it with your own conda env.
Set the following parameters in train.sh
:
--mode gt
--split 0.5
Note that the --split
determines the split between train and validation - 0.5 means 50% of data is used for training and 50% for validation.
./eval.sh