Skip to content

BriansIDP/Crowdsourcing

Repository files navigation

Crowdsourcing

Basic usage with standard Gaussian Prior:

python EM.py --algorithm em_orig

Basic usage with bi-modal Gaussian Prior:

python EM.py --algorithm em_bimodal

Run with artificial data:

python EM.py --algorithm em_orig --datapath artificial

Run on binary data:

pip install -r requirements.txt
pip install -e .
python train.py policy=em_sym_bin policy.params.seed=0 data_loader=halu_dialogue_bin
python train.py policy=em_asym_bin policy.params.seed=0 data_loader=halu_dialogue_bin
python train.py policy=majority_vote data_loader=halu_dialogue_bin

Basic usage of EM with Gaussian mixture model (GMM):

python train.py data_loader=halu_dialogue_logit policy=em_gmm

Basic usage of EM original

python train.py data_loader=halu_dialogue_logit policy=em_orig

Train PEW using GPT-2:

./train.sh

You need to specify expdir where the experimental data and model checkpoints will be stored. The first line in this file is to activate the conda environment. Please replace it with your own conda env.

To run with ground truth labels and GPT2

Set the following parameters in train.sh:

--mode gt
--split 0.5

Note that the --split determines the split between train and validation - 0.5 means 50% of data is used for training and 50% for validation.

Inference with trained model

./eval.sh

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •