Skip to content

Commit

Permalink
feat(gaussian): Loop torontonian implementation
Browse files Browse the repository at this point in the history
The loop torontonian is implemented according to
https://arxiv.org/abs/2202.04600 and https://arxiv.org/abs/2109.04528.
  • Loading branch information
Kolarovszki committed Sep 27, 2024
1 parent 1b295b9 commit c8c65e9
Show file tree
Hide file tree
Showing 21 changed files with 1,171 additions and 216 deletions.
7 changes: 4 additions & 3 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -16,9 +16,10 @@ set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_POSITION_INDEPENDENT_CODE ON)

add_subdirectory(src)
add_subdirectory(piquasso/_math)

if(CMAKE_BUILD_TYPE STREQUAL "Debug")
add_definitions(-DDEBUG)
endif()


add_subdirectory(src)
add_subdirectory(piquasso/_math)
2 changes: 1 addition & 1 deletion piquasso/_math/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
pybind11_add_module(torontonian SHARED ${CMAKE_CURRENT_SOURCE_DIR}/torontonian.cpp)

target_link_libraries(torontonian PUBLIC torontonianboost)
target_link_libraries(torontonian PUBLIC torontonianboost looptorontonianboost)

install(TARGETS torontonian LIBRARY DESTINATION piquasso/_math)
4 changes: 4 additions & 0 deletions piquasso/_math/linalg.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,6 +81,10 @@ def block_reduce(array: np.ndarray, reduce_on: Tuple[int, ...]) -> np.ndarray:
return reduce_(array, reduce_on=(reduce_on * 2))


def block_reduce_xpxp(array: np.ndarray, reduce_on: Tuple[int, ...]) -> np.ndarray:
return reduce_(array, reduce_on=np.repeat(reduce_on, 2))


def assym_reduce(array, row_reduce_on, col_reduce_on):
particles = np.sum(row_reduce_on)

Expand Down
46 changes: 41 additions & 5 deletions piquasso/_math/torontonian.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -19,21 +19,57 @@

#include "numpy_utils.hpp"
#include "torontonian.hpp"
#include "loop_torontonian.hpp"

namespace py = pybind11;

template <typename TScalar>
py::object torontonian_np(py::array_t<TScalar, py::array::c_style | py::array::forcecast> array)
py::object torontonian_np(
py::array_t<TScalar, py::array::c_style | py::array::forcecast> matrix)
{
Matrix<TScalar> matrix = numpy_to_matrix(array);
Matrix<TScalar> native_matrix = numpy_to_matrix(matrix);

TScalar result = torontonian_cpp(matrix);
TScalar result = torontonian_cpp(native_matrix);

return create_numpy_scalar(result);
}

template <typename TScalar>
py::object loop_torontonian_np(
py::array_t<TScalar, py::array::c_style | py::array::forcecast> matrix,
py::array_t<TScalar, py::array::c_style | py::array::forcecast> displacement_vector)
{
Matrix<TScalar> native_matrix = numpy_to_matrix(matrix);
Vector<TScalar> native_displacement_vector = numpy_to_vector(displacement_vector);

TScalar result = loop_torontonian_cpp(native_matrix, native_displacement_vector);

return create_numpy_scalar(result);
}

const char* torontonian_docstring = R""""(
Calculates the torontonian of a matrix.
Note:
This function expects arguments in a different ordering than usual. Usually, the
inputs are in the xxpp-ordering, but for this implementation, one needs to provide
data in the xpxp-ordering.
)"""";


const char* loop_torontonian_docstring = R""""(
Calculates the loop torontonian of a matrix and a displacement vector.
Note:
This function expects arguments in a different ordering than usual. Usually, the
inputs are in the xxpp-ordering, but for this implementation, one needs to provide
data in the xpxp-ordering.
)"""";

PYBIND11_MODULE(torontonian, m)
{
m.def("torontonian", &torontonian_np<float>);
m.def("torontonian", &torontonian_np<double>);
m.def("torontonian", &torontonian_np<float>, torontonian_docstring);
m.def("torontonian", &torontonian_np<double>, torontonian_docstring);
m.def("loop_torontonian", &loop_torontonian_np<float>, loop_torontonian_docstring);
m.def("loop_torontonian", &loop_torontonian_np<double>, loop_torontonian_docstring);
}
28 changes: 15 additions & 13 deletions piquasso/_simulators/gaussian/calculations.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,10 @@
from scipy.special import factorial

from .state import GaussianState
from .probabilities import calculate_click_probability
from .probabilities import (
calculate_click_probability_nondisplaced,
calculate_click_probability,
)

from piquasso.instructions import gates

Expand Down Expand Up @@ -512,18 +515,11 @@ def threshold_measurement(
return Result(state=state, samples=samples)


def _generate_threshold_samples_using_torontonian(
state,
instruction,
shots,
):
if not np.allclose(state.xpxp_mean_vector, np.zeros_like(state.xpxp_mean_vector)):
raise NotImplementedError(
"Threshold measurement for displaced states are not supported: "
f"xpxp_mean_vector={state.xpxp_mean_vector}"
)
def _generate_threshold_samples_using_torontonian(state, instruction, shots):
is_displaced = state._is_displaced()

rng = state._config.rng
hbar = state._config.hbar

modes = instruction.modes

Expand All @@ -533,10 +529,16 @@ def get_probability(
) -> float:
reduced_state = state.reduced(subspace_modes)

if not is_displaced:
return calculate_click_probability_nondisplaced(
reduced_state.xpxp_covariance_matrix / hbar,
occupation_numbers,
)

return calculate_click_probability(
reduced_state.xxpp_covariance_matrix,
reduced_state.xpxp_covariance_matrix / hbar,
reduced_state.xpxp_mean_vector / np.sqrt(hbar),
occupation_numbers,
state._config.hbar,
)

samples = []
Expand Down
81 changes: 66 additions & 15 deletions piquasso/_simulators/gaussian/probabilities.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,8 +21,8 @@

from scipy.special import factorial

from piquasso._math.linalg import block_reduce
from piquasso._math.torontonian import torontonian
from piquasso._math.linalg import block_reduce_xpxp
from piquasso._math.torontonian import torontonian, loop_torontonian
from piquasso.api.calculator import BaseCalculator


Expand Down Expand Up @@ -142,10 +142,9 @@ def calculate_hafnian(self, reduce_on: np.ndarray) -> float:
return self.calculator.loop_hafnian(self._A, self._gamma, reduce_on)


def calculate_click_probability(
xp_covariance: np.ndarray,
def calculate_click_probability_nondisplaced(
xpxp_covariance: np.ndarray,
occupation_number: Tuple[int, ...],
hbar: float,
) -> float:
r"""
Calculates the threshold detection probability with the equation
Expand All @@ -167,19 +166,71 @@ def calculate_click_probability(
\right ).
"""

d = len(xp_covariance) // 2
d = len(xpxp_covariance) // 2

sigma: np.ndarray = (xp_covariance / hbar + np.identity(2 * d)) / 2
sigma: np.ndarray = (xpxp_covariance + np.identity(2 * d)) / 2

sigma_inv_reduced = block_reduce(
np.linalg.inv(sigma),
reduce_on=occupation_number,
)
sigma_inv = np.linalg.inv(sigma)

sigma_inv_reduced = block_reduce_xpxp(sigma_inv, reduce_on=occupation_number)

A = np.identity(len(sigma_inv_reduced), dtype=float) - sigma_inv_reduced

probability = torontonian(A) / np.sqrt(np.linalg.det(sigma))

return max(probability, 0.0)


def calculate_click_probability(
xpxp_covariance: np.ndarray,
xpxp_mean: np.ndarray,
occupation_number: Tuple[int, ...],
) -> float:
r"""
Calculates the threshold detection probability with the equation
.. math::
p(S) = \frac{
\operatorname{ltor}( I - ( \Sigma^{-1} )_{(S)}, \vec{\gamma} )
}{
\sqrt{\operatorname{det}(\Sigma)}
},
where :math:`\Sigma \in \mathbb{R}^{2d \times 2d}` is a symmetric matrix
defined by
.. math::
\Sigma = \frac{1}{2} \left (
\frac{1}{\hbar} \sigma_{xp}
+ I
\right ),
and
.. math::
\vec{\gamma} = \Sigma^{-1} \vec{\alpha}
"""

d = len(xpxp_covariance) // 2

sigma: np.ndarray = (xpxp_covariance + np.identity(2 * d)) / 2

sigma_inv = np.linalg.inv(sigma)

gamma = sigma_inv @ xpxp_mean

sigma_inv_reduced = block_reduce_xpxp(sigma_inv, reduce_on=occupation_number)

gamma_reduced = block_reduce_xpxp(gamma, reduce_on=occupation_number)

A = np.identity(len(sigma_inv_reduced), dtype=float) - sigma_inv_reduced

exponential_term = np.exp(-xpxp_mean @ sigma_inv @ xpxp_mean / 2)

probability = (
torontonian(
np.identity(len(sigma_inv_reduced), dtype=float) - sigma_inv_reduced
)
).real / np.sqrt(np.linalg.det(sigma))
loop_torontonian(A, gamma_reduced).real
* exponential_term
/ np.sqrt(np.linalg.det(sigma))
)

return max(probability, 0.0)
13 changes: 11 additions & 2 deletions piquasso/_simulators/gaussian/state.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,7 @@
DensityMatrixCalculation,
DisplacedDensityMatrixCalculation,
NondisplacedDensityMatrixCalculation,
calculate_click_probability_nondisplaced,
calculate_click_probability,
)

Expand Down Expand Up @@ -929,10 +930,18 @@ def get_threshold_detection_probability(
f"occupation_number='{occupation_number}'."
)

hbar = self._config.hbar

if not self._is_displaced():
return calculate_click_probability_nondisplaced(
self.xpxp_covariance_matrix / hbar,
tuple(occupation_number),
)

return calculate_click_probability(
self.xxpp_covariance_matrix,
self.xpxp_covariance_matrix / hbar,
self.xpxp_mean_vector / np.sqrt(hbar),
tuple(occupation_number),
self._config.hbar,
)

@property
Expand Down
99 changes: 99 additions & 0 deletions scripts/loop_torontonian_benchmark.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,99 @@
#
# Copyright 2021-2024 Budapest Quantum Computing Group
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Benchmarking the Piquasso and TheWalrus torontonian implementations.
"""

import time

import piquasso as pq

from piquasso._math.torontonian import loop_torontonian as pq_loop_torontonian
from thewalrus import ltor as tw_loop_torontonian

import matplotlib.pyplot as plt

from scipy.stats import unitary_group

import numpy as np

np.set_printoptions(suppress=True, linewidth=200)


if __name__ == "__main__":
x = []
y = []
z = []

ITER = 10

for d in range(3, 20):
print(d)
x.append(d)

simulator = pq.GaussianSimulator(d=d)

program = pq.Program(
instructions=[pq.Vacuum()]
+ [pq.Displacement(r=np.random.rand()).on_modes(i) for i in range(d)]
+ [pq.Squeezing(r=np.random.rand()).on_modes(i) for i in range(d)]
+ [pq.Interferometer(unitary_group.rvs(d))]
)

state = simulator.execute(program).state

xpxp_covariance_matrix = state.xpxp_covariance_matrix

sigma: np.ndarray = (xpxp_covariance_matrix / 2 + np.identity(2 * d)) / 2

input_matrix = np.identity(len(sigma), dtype=float) - np.linalg.inv(sigma)
displacement_vector = state.xpxp_mean_vector

sum_ = 0.0

for _ in range(ITER):
print("|", end="", flush=True)
start_time = time.time()
pq_loop_torontonian(input_matrix, displacement_vector)
sum_ += time.time() - start_time

y.append(sum_ / ITER)
print()

xxpp_covariance_matrix = state.xxpp_covariance_matrix

sigma: np.ndarray = (xxpp_covariance_matrix / 2 + np.identity(2 * d)) / 2

input_matrix = np.identity(len(sigma), dtype=float) - np.linalg.inv(sigma)
displacement_vector = state.xxpp_mean_vector

sum_ = 0.0

for _ in range(ITER):
print("-", end="", flush=True)
start_time = time.time()
tw_loop_torontonian(input_matrix, displacement_vector)
sum_ += time.time() - start_time

z.append(sum_ / ITER)
print()

plt.scatter(x[1:], y[1:], label="Piquasso")
plt.scatter(x[1:], z[1:], label="TheWalrus")
plt.legend()
plt.yscale("log")

plt.show()
Loading

0 comments on commit c8c65e9

Please sign in to comment.