-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: Batch processing of pure Fock states
The batch processing of pure Fock states has been implemented. This is done by storing multiple states in a tensor of shape `(state_vector_size, number_of_batches)` in `BatchPureFockState`. However, `BatchPureFockState` has a limited support of methods compared to the original `PureFockState`.
- Loading branch information
1 parent
39e4146
commit e45c7db
Showing
13 changed files
with
1,505 additions
and
51 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,153 @@ | ||
# | ||
# Copyright 2021-2024 Budapest Quantum Computing Group | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from typing import Optional | ||
|
||
import numpy as np | ||
|
||
from piquasso.api.config import Config | ||
from piquasso.api.exceptions import InvalidState | ||
from piquasso.api.calculator import BaseCalculator | ||
|
||
from piquasso._math.linalg import vector_absolute_square | ||
from piquasso._math.indices import get_index_in_fock_space | ||
|
||
from .state import PureFockState | ||
|
||
|
||
class BatchPureFockState(PureFockState): | ||
r"""A simulated batch pure Fock state, containing multiple state vectors.""" | ||
|
||
def __init__( | ||
self, *, d: int, calculator: BaseCalculator, config: Optional[Config] = None | ||
) -> None: | ||
""" | ||
Args: | ||
d (int): The number of modes. | ||
calculator (BaseCalculator): Instance containing calculation functions. | ||
config (Config): Instance containing constants for the simulation. | ||
""" | ||
|
||
super().__init__(d=d, calculator=calculator, config=config) | ||
|
||
def _apply_separate_state_vectors(self, state_vectors): | ||
self._state_vector = self._np.array( | ||
state_vectors, dtype=self._config.complex_dtype | ||
).T | ||
|
||
@property | ||
def _batch_size(self): | ||
return self._state_vector.shape[1] | ||
|
||
@property | ||
def _batch_state_vectors(self): | ||
for index in range(self._batch_size): | ||
yield self._state_vector[:, index] | ||
|
||
@property | ||
def nonzero_elements(self): | ||
return [ | ||
self._nonzero_elements_for_single_state_vector(state_vector) | ||
for state_vector in self._batch_state_vectors | ||
] | ||
|
||
def __repr__(self) -> str: | ||
partial_strings = [] | ||
for partial_nonzero_elements in self.nonzero_elements: | ||
partial_strings.append( | ||
self._get_repr_for_single_state_vector(partial_nonzero_elements) | ||
) | ||
|
||
return "\n".join(partial_strings) | ||
|
||
def __eq__(self, other: object) -> bool: | ||
if not isinstance(other, BatchPureFockState): | ||
return False | ||
return self._np.allclose(self._state_vector, other._state_vector) | ||
|
||
@property | ||
def fock_probabilities(self): | ||
return [ | ||
vector_absolute_square(state_vector, self._calculator) | ||
for state_vector in self._batch_state_vectors | ||
] | ||
|
||
@property | ||
def norm(self): | ||
return [ | ||
self._calculator.np.sum(partial_fock_probabilities) | ||
for partial_fock_probabilities in self.fock_probabilities | ||
] | ||
|
||
def normalize(self) -> None: | ||
if not self._config.normalize: | ||
return | ||
|
||
norms = self.norm | ||
|
||
if any(np.isclose(norm, 0) for norm in norms): | ||
raise InvalidState("The norm of a state in the batch is 0.") | ||
|
||
self._state_vector = self._state_vector / self._np.sqrt(norms) | ||
|
||
def validate(self) -> None: | ||
if not all(np.isclose(norm, 1.0) for norm in self.norm): | ||
raise InvalidState( | ||
"The sum of probabilities is not close to 1.0 for at least one state " | ||
"in the batch." | ||
) | ||
|
||
def _get_mean_position_indices(self, mode): | ||
fallback_np = self._calculator.fallback_np | ||
|
||
left_indices = [] | ||
multipliers = [] | ||
right_indices = [] | ||
|
||
for index, basis in enumerate(self._space): | ||
i = basis[mode] | ||
basis_array = fallback_np.array(basis) | ||
|
||
if i > 0: | ||
basis_array[mode] = i - 1 | ||
lower_index = get_index_in_fock_space(tuple(basis_array)) | ||
|
||
left_indices.append(lower_index) | ||
multipliers.append(fallback_np.sqrt(i)) | ||
right_indices.append(index) | ||
|
||
if sum(basis) + 1 < self._config.cutoff: | ||
basis_array[mode] = i + 1 | ||
upper_index = get_index_in_fock_space(tuple(basis_array)) | ||
|
||
left_indices.append(upper_index) | ||
multipliers.append(fallback_np.sqrt(i + 1)) | ||
right_indices.append(index) | ||
|
||
multipliers = fallback_np.array(multipliers) | ||
|
||
return multipliers, left_indices, right_indices | ||
|
||
def mean_position(self, mode: int) -> np.ndarray: | ||
np = self._calculator.np | ||
fallback_np = self._calculator.fallback_np | ||
multipliers, left_indices, right_indices = self._get_mean_position_indices(mode) | ||
|
||
lhs = (multipliers * self._state_vector[left_indices].T).T | ||
rhs = self._state_vector[right_indices] | ||
|
||
return np.real( | ||
np.einsum("ij,ij->j", lhs, rhs) * fallback_np.sqrt(self._config.hbar / 2) | ||
) |
Oops, something went wrong.