-
-
Notifications
You must be signed in to change notification settings - Fork 988
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #116 from Wybxc/onnx
feat: onnx support
- Loading branch information
Showing
5 changed files
with
245 additions
and
25 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,213 @@ | ||
import abc | ||
import cv2 | ||
import numpy as np | ||
import contextlib | ||
from huggingface_hub import hf_hub_download | ||
|
||
|
||
class DocLayoutModel(abc.ABC): | ||
@staticmethod | ||
def load_torch(): | ||
model = TorchModel.from_pretrained( | ||
repo_id="juliozhao/DocLayout-YOLO-DocStructBench", | ||
filename="doclayout_yolo_docstructbench_imgsz1024.pt", | ||
) | ||
return model | ||
|
||
@staticmethod | ||
def load_onnx(): | ||
model = OnnxModel.from_pretrained( | ||
repo_id="wybxc/DocLayout-YOLO-DocStructBench-onnx", | ||
filename="doclayout_yolo_docstructbench_imgsz1024.onnx", | ||
) | ||
return model | ||
|
||
@staticmethod | ||
def load_available(): | ||
with contextlib.suppress(ImportError): | ||
return DocLayoutModel.load_torch() | ||
|
||
with contextlib.suppress(ImportError): | ||
return DocLayoutModel.load_onnx() | ||
|
||
raise ImportError( | ||
"Please install the `torch` or `onnx` feature to use the DocLayout model." | ||
) | ||
|
||
@property | ||
@abc.abstractmethod | ||
def stride(self) -> int: | ||
"""Stride of the model input.""" | ||
pass | ||
|
||
@abc.abstractmethod | ||
def predict(self, image, imgsz=1024, **kwargs) -> list: | ||
""" | ||
Predict the layout of a document page. | ||
Args: | ||
image: The image of the document page. | ||
imgsz: Resize the image to this size. Must be a multiple of the stride. | ||
**kwargs: Additional arguments. | ||
""" | ||
pass | ||
|
||
|
||
class TorchModel(DocLayoutModel): | ||
def __init__(self, model_path: str): | ||
try: | ||
import doclayout_yolo | ||
except ImportError: | ||
raise ImportError( | ||
"Please install the `torch` feature to use the Torch model." | ||
) | ||
|
||
self.model_path = model_path | ||
self.model = doclayout_yolo.YOLOv10(model_path) | ||
|
||
@staticmethod | ||
def from_pretrained(repo_id: str, filename: str): | ||
pth = hf_hub_download(repo_id=repo_id, filename=filename) | ||
return TorchModel(pth) | ||
|
||
@property | ||
def stride(self): | ||
return 32 | ||
|
||
def predict(self, *args, **kwargs): | ||
return self.model.predict(*args, **kwargs) | ||
|
||
|
||
class YoloResult: | ||
"""Helper class to store detection results from ONNX model.""" | ||
|
||
def __init__(self, boxes, names): | ||
self.boxes = [YoloBox(data=d) for d in boxes] | ||
self.boxes.sort(key=lambda x: x.conf, reverse=True) | ||
self.names = names | ||
|
||
|
||
class YoloBox: | ||
"""Helper class to store detection results from ONNX model.""" | ||
|
||
def __init__(self, data): | ||
self.xyxy = data[:4] | ||
self.conf = data[-2] | ||
self.cls = data[-1] | ||
|
||
|
||
class OnnxModel(DocLayoutModel): | ||
def __init__(self, model_path: str): | ||
import ast | ||
|
||
try: | ||
|
||
import onnx | ||
import onnxruntime | ||
except ImportError: | ||
raise ImportError( | ||
"Please install the `onnx` feature to use the ONNX model." | ||
) | ||
|
||
self.model_path = model_path | ||
|
||
model = onnx.load(model_path) | ||
metadata = {d.key: d.value for d in model.metadata_props} | ||
self._stride = ast.literal_eval(metadata["stride"]) | ||
self._names = ast.literal_eval(metadata["names"]) | ||
|
||
self.model = onnxruntime.InferenceSession(model.SerializeToString()) | ||
|
||
@staticmethod | ||
def from_pretrained(repo_id: str, filename: str): | ||
pth = hf_hub_download(repo_id=repo_id, filename=filename) | ||
return OnnxModel(pth) | ||
|
||
@property | ||
def stride(self): | ||
return self._stride | ||
|
||
def resize_and_pad_image(self, image, new_shape): | ||
""" | ||
Resize and pad the image to the specified size, ensuring dimensions are multiples of stride. | ||
Parameters: | ||
- image: Input image | ||
- new_shape: Target size (integer or (height, width) tuple) | ||
- stride: Padding alignment stride, default 32 | ||
Returns: | ||
- Processed image | ||
""" | ||
if isinstance(new_shape, int): | ||
new_shape = (new_shape, new_shape) | ||
|
||
h, w = image.shape[:2] | ||
new_h, new_w = new_shape | ||
|
||
# Calculate scaling ratio | ||
r = min(new_h / h, new_w / w) | ||
resized_h, resized_w = int(round(h * r)), int(round(w * r)) | ||
|
||
# Resize image | ||
image = cv2.resize( | ||
image, (resized_w, resized_h), interpolation=cv2.INTER_LINEAR | ||
) | ||
|
||
# Calculate padding size and align to stride multiple | ||
pad_w = (new_w - resized_w) % self.stride | ||
pad_h = (new_h - resized_h) % self.stride | ||
top, bottom = pad_h // 2, pad_h - pad_h // 2 | ||
left, right = pad_w // 2, pad_w - pad_w // 2 | ||
|
||
# Add padding | ||
image = cv2.copyMakeBorder( | ||
image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114) | ||
) | ||
|
||
return image | ||
|
||
def scale_boxes(self, img1_shape, boxes, img0_shape): | ||
""" | ||
Rescales bounding boxes (in the format of xyxy by default) from the shape of the image they were originally | ||
specified in (img1_shape) to the shape of a different image (img0_shape). | ||
Args: | ||
img1_shape (tuple): The shape of the image that the bounding boxes are for, | ||
in the format of (height, width). | ||
boxes (torch.Tensor): the bounding boxes of the objects in the image, in the format of (x1, y1, x2, y2) | ||
img0_shape (tuple): the shape of the target image, in the format of (height, width). | ||
Returns: | ||
boxes (torch.Tensor): The scaled bounding boxes, in the format of (x1, y1, x2, y2) | ||
""" | ||
|
||
# Calculate scaling ratio | ||
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) | ||
|
||
# Calculate padding size | ||
pad_x = round((img1_shape[1] - img0_shape[1] * gain) / 2 - 0.1) | ||
pad_y = round((img1_shape[0] - img0_shape[0] * gain) / 2 - 0.1) | ||
|
||
# Remove padding and scale boxes | ||
boxes[..., :4] = (boxes[..., :4] - [pad_x, pad_y, pad_x, pad_y]) / gain | ||
return boxes | ||
|
||
def predict(self, image, imgsz=1024, **kwargs): | ||
# Preprocess input image | ||
orig_h, orig_w = image.shape[:2] | ||
pix = self.resize_and_pad_image(image, new_shape=imgsz) | ||
pix = np.transpose(pix, (2, 0, 1)) # CHW | ||
pix = np.expand_dims(pix, axis=0) # BCHW | ||
pix = pix.astype(np.float32) / 255.0 # Normalize to [0, 1] | ||
new_h, new_w = pix.shape[2:] | ||
|
||
# Run inference | ||
preds = self.model.run(None, {"images": pix})[0] | ||
|
||
# Postprocess predictions | ||
preds = preds[preds[..., 4] > 0.25] | ||
preds[..., :4] = self.scale_boxes( | ||
(new_h, new_w), preds[..., :4], (orig_h, orig_w) | ||
) | ||
return [YoloResult(boxes=preds, names=self._names)] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -5,7 +5,7 @@ description = "Latex PDF Translator" | |
authors = [{ name = "Byaidu", email = "[email protected]" }] | ||
license = "AGPL-3.0" | ||
readme = "README.md" | ||
requires-python = ">=3.8,<3.13" | ||
requires-python = ">=3.9,<3.13" | ||
classifiers = [ | ||
"Programming Language :: Python :: 3", | ||
"Operating System :: OS Independent", | ||
|
@@ -17,18 +17,23 @@ dependencies = [ | |
"pymupdf", | ||
"tqdm", | ||
"tenacity", | ||
"doclayout-yolo", | ||
"numpy", | ||
"ollama", | ||
"deepl<1.19.1", | ||
"openai", | ||
"azure-ai-translation-text<=1.0.1", | ||
"gradio", | ||
"huggingface_hub", | ||
"torch", | ||
"onnx", | ||
"onnxruntime", | ||
"opencv-python-headless", | ||
] | ||
|
||
[project.optional-dependencies] | ||
torch = [ | ||
"doclayout-yolo", | ||
"torch", | ||
] | ||
dev = [ | ||
"black", | ||
"flake8", | ||
|