Skip to content

Commit

Permalink
Merge pull request #116 from Wybxc/onnx
Browse files Browse the repository at this point in the history
feat: onnx support
  • Loading branch information
Byaidu authored Nov 23, 2024
2 parents bd104af + d5eed6c commit 0a0cb70
Show file tree
Hide file tree
Showing 5 changed files with 245 additions and 25 deletions.
213 changes: 213 additions & 0 deletions pdf2zh/doclayout.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,213 @@
import abc
import cv2
import numpy as np
import contextlib
from huggingface_hub import hf_hub_download


class DocLayoutModel(abc.ABC):
@staticmethod
def load_torch():
model = TorchModel.from_pretrained(
repo_id="juliozhao/DocLayout-YOLO-DocStructBench",
filename="doclayout_yolo_docstructbench_imgsz1024.pt",
)
return model

@staticmethod
def load_onnx():
model = OnnxModel.from_pretrained(
repo_id="wybxc/DocLayout-YOLO-DocStructBench-onnx",
filename="doclayout_yolo_docstructbench_imgsz1024.onnx",
)
return model

@staticmethod
def load_available():
with contextlib.suppress(ImportError):
return DocLayoutModel.load_torch()

with contextlib.suppress(ImportError):
return DocLayoutModel.load_onnx()

raise ImportError(
"Please install the `torch` or `onnx` feature to use the DocLayout model."
)

@property
@abc.abstractmethod
def stride(self) -> int:
"""Stride of the model input."""
pass

@abc.abstractmethod
def predict(self, image, imgsz=1024, **kwargs) -> list:
"""
Predict the layout of a document page.
Args:
image: The image of the document page.
imgsz: Resize the image to this size. Must be a multiple of the stride.
**kwargs: Additional arguments.
"""
pass


class TorchModel(DocLayoutModel):
def __init__(self, model_path: str):
try:
import doclayout_yolo
except ImportError:
raise ImportError(
"Please install the `torch` feature to use the Torch model."
)

self.model_path = model_path
self.model = doclayout_yolo.YOLOv10(model_path)

@staticmethod
def from_pretrained(repo_id: str, filename: str):
pth = hf_hub_download(repo_id=repo_id, filename=filename)
return TorchModel(pth)

@property
def stride(self):
return 32

def predict(self, *args, **kwargs):
return self.model.predict(*args, **kwargs)


class YoloResult:
"""Helper class to store detection results from ONNX model."""

def __init__(self, boxes, names):
self.boxes = [YoloBox(data=d) for d in boxes]
self.boxes.sort(key=lambda x: x.conf, reverse=True)
self.names = names


class YoloBox:
"""Helper class to store detection results from ONNX model."""

def __init__(self, data):
self.xyxy = data[:4]
self.conf = data[-2]
self.cls = data[-1]


class OnnxModel(DocLayoutModel):
def __init__(self, model_path: str):
import ast

try:

import onnx
import onnxruntime
except ImportError:
raise ImportError(
"Please install the `onnx` feature to use the ONNX model."
)

self.model_path = model_path

model = onnx.load(model_path)
metadata = {d.key: d.value for d in model.metadata_props}
self._stride = ast.literal_eval(metadata["stride"])
self._names = ast.literal_eval(metadata["names"])

self.model = onnxruntime.InferenceSession(model.SerializeToString())

@staticmethod
def from_pretrained(repo_id: str, filename: str):
pth = hf_hub_download(repo_id=repo_id, filename=filename)
return OnnxModel(pth)

@property
def stride(self):
return self._stride

def resize_and_pad_image(self, image, new_shape):
"""
Resize and pad the image to the specified size, ensuring dimensions are multiples of stride.
Parameters:
- image: Input image
- new_shape: Target size (integer or (height, width) tuple)
- stride: Padding alignment stride, default 32
Returns:
- Processed image
"""
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)

h, w = image.shape[:2]
new_h, new_w = new_shape

# Calculate scaling ratio
r = min(new_h / h, new_w / w)
resized_h, resized_w = int(round(h * r)), int(round(w * r))

# Resize image
image = cv2.resize(
image, (resized_w, resized_h), interpolation=cv2.INTER_LINEAR
)

# Calculate padding size and align to stride multiple
pad_w = (new_w - resized_w) % self.stride
pad_h = (new_h - resized_h) % self.stride
top, bottom = pad_h // 2, pad_h - pad_h // 2
left, right = pad_w // 2, pad_w - pad_w // 2

# Add padding
image = cv2.copyMakeBorder(
image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114)
)

return image

def scale_boxes(self, img1_shape, boxes, img0_shape):
"""
Rescales bounding boxes (in the format of xyxy by default) from the shape of the image they were originally
specified in (img1_shape) to the shape of a different image (img0_shape).
Args:
img1_shape (tuple): The shape of the image that the bounding boxes are for,
in the format of (height, width).
boxes (torch.Tensor): the bounding boxes of the objects in the image, in the format of (x1, y1, x2, y2)
img0_shape (tuple): the shape of the target image, in the format of (height, width).
Returns:
boxes (torch.Tensor): The scaled bounding boxes, in the format of (x1, y1, x2, y2)
"""

# Calculate scaling ratio
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])

# Calculate padding size
pad_x = round((img1_shape[1] - img0_shape[1] * gain) / 2 - 0.1)
pad_y = round((img1_shape[0] - img0_shape[0] * gain) / 2 - 0.1)

# Remove padding and scale boxes
boxes[..., :4] = (boxes[..., :4] - [pad_x, pad_y, pad_x, pad_y]) / gain
return boxes

def predict(self, image, imgsz=1024, **kwargs):
# Preprocess input image
orig_h, orig_w = image.shape[:2]
pix = self.resize_and_pad_image(image, new_shape=imgsz)
pix = np.transpose(pix, (2, 0, 1)) # CHW
pix = np.expand_dims(pix, axis=0) # BCHW
pix = pix.astype(np.float32) / 255.0 # Normalize to [0, 1]
new_h, new_w = pix.shape[2:]

# Run inference
preds = self.model.run(None, {"images": pix})[0]

# Postprocess predictions
preds = preds[preds[..., 4] > 0.25]
preds[..., :4] = self.scale_boxes(
(new_h, new_w), preds[..., :4], (orig_h, orig_w)
)
return [YoloResult(boxes=preds, names=self._names)]
9 changes: 2 additions & 7 deletions pdf2zh/high_level.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,6 @@
import sys
from io import StringIO
from typing import Any, BinaryIO, Container, Iterator, Optional, cast
import torch
import numpy as np
import tqdm
from pymupdf import Document
Expand All @@ -22,7 +21,7 @@
from pdf2zh.pdfexceptions import PDFValueError
from pdf2zh.pdfinterp import PDFPageInterpreter, PDFResourceManager
from pdf2zh.pdfpage import PDFPage
from pdf2zh.utils import AnyIO, FileOrName, open_filename
from pdf2zh.utils import AnyIO, FileOrName, open_filename, get_device


def extract_text_to_fp(
Expand Down Expand Up @@ -176,11 +175,7 @@ def extract_text_to_fp(
pix.height, pix.width, 3
)[:, :, ::-1]
page_layout = model.predict(
image,
imgsz=int(pix.height / 32) * 32,
device=(
"cuda:0" if torch.cuda.is_available() else "cpu"
), # Auto-select GPU if available
image, imgsz=int(pix.height / 32) * 32, device=get_device()
)[0]
# kdtree 是不可能 kdtree 的,不如直接渲染成图片,用空间换时间
box = np.ones((pix.height, pix.width))
Expand Down
24 changes: 9 additions & 15 deletions pdf2zh/pdf2zh.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,6 @@
from typing import TYPE_CHECKING, Any, Container, Iterable, List, Optional

import pymupdf
from huggingface_hub import hf_hub_download

from pdf2zh import __version__
from pdf2zh.pdfexceptions import PDFValueError
Expand All @@ -27,10 +26,14 @@


def setup_log() -> None:
import doclayout_yolo

logging.basicConfig()
doclayout_yolo.utils.LOGGER.setLevel(logging.WARNING)

try:
import doclayout_yolo

doclayout_yolo.utils.LOGGER.setLevel(logging.WARNING)
except ImportError:
pass


def check_files(files: List[str]) -> List[str]:
Expand Down Expand Up @@ -73,8 +76,7 @@ def extract_text(
output: str = "",
**kwargs: Any,
) -> AnyIO:
import doclayout_yolo

from pdf2zh.doclayout import DocLayoutModel
import pdf2zh.high_level

if not files:
Expand All @@ -86,15 +88,7 @@ def extract_text(
output_type = alttype

outfp: AnyIO = sys.stdout
# pth = os.path.join(tempfile.gettempdir(), 'doclayout_yolo_docstructbench_imgsz1024.pt')
# if not os.path.exists(pth):
# print('Downloading...')
# urllib.request.urlretrieve("http://huggingface.co/juliozhao/DocLayout-YOLO-DocStructBench/resolve/main/doclayout_yolo_docstructbench_imgsz1024.pt",pth)
pth = hf_hub_download(
repo_id="juliozhao/DocLayout-YOLO-DocStructBench",
filename="doclayout_yolo_docstructbench_imgsz1024.pt",
)
model = doclayout_yolo.YOLOv10(pth)
model = DocLayoutModel.load_available()

for file in files:
filename = os.path.splitext(os.path.basename(file))[0]
Expand Down
13 changes: 13 additions & 0 deletions pdf2zh/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -819,3 +819,16 @@ def format_int_alpha(value: int) -> str:

result.reverse()
return "".join(result)


def get_device():
"""Get the device to use for computation."""
try:
import torch

if torch.cuda.is_available():
return "cuda:0"
except ImportError:
pass

return "cpu"
11 changes: 8 additions & 3 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@ description = "Latex PDF Translator"
authors = [{ name = "Byaidu", email = "[email protected]" }]
license = "AGPL-3.0"
readme = "README.md"
requires-python = ">=3.8,<3.13"
requires-python = ">=3.9,<3.13"
classifiers = [
"Programming Language :: Python :: 3",
"Operating System :: OS Independent",
Expand All @@ -17,18 +17,23 @@ dependencies = [
"pymupdf",
"tqdm",
"tenacity",
"doclayout-yolo",
"numpy",
"ollama",
"deepl<1.19.1",
"openai",
"azure-ai-translation-text<=1.0.1",
"gradio",
"huggingface_hub",
"torch",
"onnx",
"onnxruntime",
"opencv-python-headless",
]

[project.optional-dependencies]
torch = [
"doclayout-yolo",
"torch",
]
dev = [
"black",
"flake8",
Expand Down

0 comments on commit 0a0cb70

Please sign in to comment.