Skip to content

Commit

Permalink
Add support for density compensation (#109)
Browse files Browse the repository at this point in the history
* Add support for density compensation

* Fix Documentation and PEP8

* Update to utils.py and README

* Update tests for sensitivity extraction

* remove warning for pyNUFFT and make it an error

* Update based on comments from Zac

* Revert a single change to prevent unwanted changes

* Final changes

* Make den_c None in case not used

* Fix Doc

Co-authored-by: chaithyagr <[email protected]>
  • Loading branch information
chaithyagr and chaithyagr authored Jul 9, 2020
1 parent b79a5da commit d6acae5
Show file tree
Hide file tree
Showing 9 changed files with 332 additions and 50 deletions.
2 changes: 1 addition & 1 deletion README.rst
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ Special Installations

For faster NUFFT operation, pysap-mri uses gpuNUFFT, to run the NUFFT on GPU. To install gpuNUFFT, please use:

``pip install git+https://github.com/andyschwarzl/gpuNUFFT``
``pip install gpuNUFFT``

We are still in the process of merging this and getting a pip release for gpuNUFFT. Note, that you can still use CPU
NFFT without installing the package.
Expand Down
78 changes: 78 additions & 0 deletions examples/GPU_Examples/NonCartesian_gpuNUFFT_DensityCompensation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,78 @@
"""
Neuroimaging non-cartesian reconstruction
=========================================
Author: Chaithya G R
In this tutorial we will reconstruct an MR Image directly with density
compensation
Import neuroimaging data
------------------------
We use the toy datasets available in pysap, more specifically a 2D brain slice
and the radial acquisition scheme (non-cartesian).
"""

# Package import
from mri.operators import NonCartesianFFT, WaveletUD2
from mri.operators.utils import convert_locations_to_mask, \
gridded_inverse_fourier_transform_nd
from mri.operators.fourier.utils import estimate_density_compensation
from mri.reconstructors import SingleChannelReconstructor
import pysap
from pysap.data import get_sample_data

# Third party import
from modopt.math.metrics import ssim
from modopt.opt.linear import Identity
from modopt.opt.proximity import SparseThreshold
import numpy as np

# Loading input data
image = get_sample_data('2d-mri')

# Obtain MRI non-cartesian mask and estimate the density compensation
radial_mask = get_sample_data("mri-radial-samples")
kspace_loc = radial_mask.data
density_comp = estimate_density_compensation(kspace_loc, image.shape)

#############################################################################
# Generate the kspace
# -------------------
#
# From the 2D brain slice and the acquisition mask, we retrospectively
# undersample the k-space using a radial acquisition mask
# We then reconstruct using adjoint with and without density compensation

# Get the locations of the kspace samples and the associated observations
fourier_op = NonCartesianFFT(
samples=kspace_loc,
shape=image.shape,
implementation='gpuNUFFT',
)
fourier_op_density_comp = NonCartesianFFT(
samples=kspace_loc,
shape=image.shape,
implementation='gpuNUFFT',
density_comp=density_comp
)
# Get the kspace data retrospectively. Note that this can be done with
# `fourier_op_density_comp` as the forward operator is the same
kspace_obs = fourier_op.op(image.data)

# Simple adjoint
image_rec0 = pysap.Image(data=np.abs(fourier_op.adj_op(kspace_obs)))
# image_rec0.show()
base_ssim = ssim(image_rec0, image)
print('The SSIM from Adjoint is : ' + str(base_ssim))

# Density Compensation adjoint:
# This preconditions k-space giving a result closer to inverse
image_rec1 = pysap.Image(data=np.abs(
fourier_op_density_comp.adj_op(kspace_obs))
)
# image_rec1.show()
new_ssim = ssim(image_rec1, image)
print('The SSIM from Density '
'compensated Adjoint is : ' + str(new_ssim))
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
"""
Neuroimaging non-cartesian reconstruction
=========================================
Author: Chaithya G R
In this tutorial we will reconstruct an MR Image directly with density
compensation and SENSE from gpuNUFFT
Import neuroimaging data
------------------------
We use the toy datasets available in pysap, more specifically a 3D orange data
and the radial acquisition scheme (non-cartesian).
"""

# Package import
from mri.operators import NonCartesianFFT, WaveletUD2
from mri.operators.utils import convert_locations_to_mask, \
gridded_inverse_fourier_transform_nd
from mri.operators.fourier.utils import estimate_density_compensation
from mri.reconstructors import SingleChannelReconstructor
from mri.reconstructors.utils.extract_sensitivity_maps import get_Smaps
import pysap
from pysap.data import get_sample_data

# Third party import
from modopt.math.metrics import ssim
from modopt.opt.linear import Identity
from modopt.opt.proximity import SparseThreshold
import numpy as np

# Loading input data
image = get_sample_data('3d-pmri')
cartesian = np.linalg.norm(image, axis=0)

# Obtain MRI non-cartesian mask and estimate the density compensation
radial_mask = get_sample_data("mri-radial-3d-samples")
kspace_loc = radial_mask.data
density_comp = estimate_density_compensation(kspace_loc, cartesian.shape)

#############################################################################
# Generate the kspace
# -------------------
#
# From the 3D orange slice and 3D radial acquisition mask, we retrospectively
# undersample the k-space
# We then reconstruct using adjoint with and without density compensation

# Get the locations of the kspace samples and the associated observations
fourier_op = NonCartesianFFT(
samples=kspace_loc,
shape=cartesian.shape,
n_coils=image.shape[0],
implementation='gpuNUFFT',
)
kspace_obs = fourier_op.op(image.data)
Smaps, SOS = get_Smaps(
k_space=kspace_obs,
img_shape=fourier_op.shape,
samples=kspace_loc,
thresh=(0.05, 0.05, 0.05), # The cutoff threshold in each kspace
# direction between 0 and kspace_max (0.5)
min_samples=kspace_loc.min(axis=0),
max_samples=kspace_loc.max(axis=0),
density_comp=density_comp,
mode='NFFT',
)
fourier_op_sense_dc = NonCartesianFFT(
samples=kspace_loc,
shape=cartesian.shape,
implementation='gpuNUFFT',
n_coils=image.shape[0],
density_comp=density_comp,
smaps=Smaps,
)

# Density Compensation SENSE adjoint:
# This preconditions k-space giving a result closer to inverse
image_rec1 = pysap.Image(data=np.abs(
fourier_op_sense_dc.adj_op(kspace_obs))
)
# image_rec1.show()
base_ssim = ssim(image_rec1, cartesian)
print('The SSIM for simple Density '
'compensated SENSE Adjoint is : ' + str(base_ssim))
57 changes: 42 additions & 15 deletions mri/operators/fourier/non_cartesian.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,12 +27,13 @@
warnings.warn("pynfft python package has not been found. If needed use "
"the master release.")
pass
pynufft_available = False
try:
from pynufft import NUFFT_hsa, NUFFT_cpu
except Exception:
warnings.warn("pynufft python package has not been found. If needed use "
"the master release. Till then you cannot use NUFFT on GPU")
pass
else:
pynufft_available = True

gpunufft_available = False
try:
Expand Down Expand Up @@ -236,6 +237,10 @@ def __init__(self, samples, shape, platform='cuda', Kd=None, Jd=None,
"""
if (n_coils < 1) or (type(n_coils) is not int):
raise ValueError('The number of coils should be an integer >= 1')
if not pynufft_available:
raise ValueError('PyNUFFT Package is not installed, please '
'consider using `gpuNUFFT` or install the '
'PyNUFFT package')
self.nb_coils = n_coils
self.shape = shape
self.platform = platform
Expand Down Expand Up @@ -464,14 +469,17 @@ def __init__(self, samples, shape, n_coils=1, density_comp=None,
balance_workload
)

def op(self, image):
def op(self, image, interpolate_data=False):
""" This method calculates the masked non-cartesian Fourier transform
of a 2D / 3D image.
Parameters
----------
image: np.ndarray
input array with the same shape as shape.
interpolate_data: bool, default False
if set to True, the image is just apodized and interpolated to
kspace locations. This is used for density estimation.
Returns
-------
Expand All @@ -484,31 +492,36 @@ def op(self, image):
if self.n_coils > 1 and not self.uses_sense:
coeff = self.operator.op(np.asarray(
[np.reshape(image_ch.T, image_ch.size) for image_ch in image]
).T)
).T, interpolate_data)
else:
coeff = self.operator.op(np.reshape(image.T, image.size))
coeff = self.operator.op(
np.reshape(image.T, image.size),
interpolate_data
)
# Data is always returned as num_channels X coeff_array,
# so for single channel, we extract single array
if not self.uses_sense:
coeff = coeff[0]
return coeff

def adj_op(self, coeff):
def adj_op(self, coeff, grid_data=False):
""" This method calculates adjoint of non-uniform Fourier
transform of a 1-D coefficients array.
Parameters
----------
coeff: np.ndarray
masked non-uniform Fourier transform 1D data.
grid_data: bool, default False
if True, the kspace data is gridded and returned,
this is used for density compensation
Returns
-------
np.ndarray
adjoint operator of Non Uniform Fourier transform of the
input coefficients.
"""
image = self.operator.adj_op(coeff)
image = self.operator.adj_op(coeff, grid_data)
if self.n_coils > 1 and not self.uses_sense:
image = np.asarray(
[image_ch.T for image_ch in image]
Expand All @@ -523,7 +536,7 @@ def adj_op(self, coeff):
class NonCartesianFFT(OperatorBase):
"""This class wraps around different implementation algorithms for NFFT"""
def __init__(self, samples, shape, implementation='cpu', n_coils=1,
**kwargs):
density_comp=None, **kwargs):
""" Initialize the class.
Parameters
Expand All @@ -548,9 +561,11 @@ def __init__(self, samples, shape, implementation='cpu', n_coils=1,
self.samples = samples
self.n_coils = n_coils
if implementation == 'cpu':
self.density_comp = density_comp
self.implementation = NFFT(samples=samples, shape=shape,
n_coils=self.n_coils)
elif implementation == 'cuda' or implementation == 'opencl':
self.density_comp = density_comp
self.implementation = NUFFT(samples=samples, shape=shape,
platform=implementation,
n_coils=self.n_coils)
Expand All @@ -559,14 +574,19 @@ def __init__(self, samples, shape, implementation='cpu', n_coils=1,
raise ValueError('gpuNUFFT library is not installed, '
'please refer to README'
'or use cpu for implementation')
self.implementation = gpuNUFFT(samples=samples, shape=shape,
n_coils=self.n_coils, **kwargs)
self.implementation = gpuNUFFT(
samples=samples,
shape=shape,
n_coils=self.n_coils,
density_comp=density_comp,
**kwargs
)
else:
raise ValueError('Bad implementation ' + implementation +
' chosen. Please choose between "cpu" | "cuda" |'
'"opencl" | "gpuNUFFT"')

def op(self, data):
def op(self, data, *args):
""" This method calculates the masked non-cartesian Fourier transform
of an image.
Expand All @@ -579,9 +599,9 @@ def op(self, data):
-------
masked Fourier transform of the input image.
"""
return self.implementation.op(data)
return self.implementation.op(data, *args)

def adj_op(self, coeffs):
def adj_op(self, coeffs, *args):
""" This method calculates inverse masked non-uniform Fourier
transform of a 1-D coefficients array.
Expand All @@ -594,7 +614,14 @@ def adj_op(self, coeffs):
-------
inverse discrete Fourier transform of the input coefficients.
"""
return self.implementation.adj_op(coeffs)
if not isinstance(self.implementation, gpuNUFFT) and \
self.density_comp is not None:
return self.implementation.adj_op(
coeffs * self.density_comp,
*args
)
else:
return self.implementation.adj_op(coeffs, *args)


class Stacked3DNFFT(OperatorBase):
Expand Down
33 changes: 33 additions & 0 deletions mri/operators/fourier/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -308,3 +308,36 @@ def check_if_fourier_op_uses_sense(fourier_op):
return fourier_op.implementation.uses_sense
else:
return False


def estimate_density_compensation(kspace_loc, volume_shape, num_iterations=10):
""" Utils function to obtain the density compensator for a
given set of kspace locations.
Parameters
----------
kspace_loc: np.ndarray
the kspace locations
volume_shape: np.ndarray
the volume shape
num_iterations: int default 10
the number of iterations for density estimation
"""
from .non_cartesian import NonCartesianFFT
from .non_cartesian import gpunufft_available
if gpunufft_available is False:
raise ValueError("gpuNUFFT is not available, cannot "
"estimate the density compensation")
grid_op = NonCartesianFFT(
samples=kspace_loc,
shape=volume_shape,
implementation='gpuNUFFT',
osf=1,
)
density_comp = np.ones(kspace_loc.shape[0])
for _ in range(num_iterations):
density_comp = (
density_comp /
np.abs(grid_op.op(grid_op.adj_op(density_comp, True), True))
)
return density_comp
Loading

0 comments on commit d6acae5

Please sign in to comment.