forked from causal-rl-anonymous/causal-rl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
223 lines (149 loc) · 7.26 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import torch
import datetime
def print_log(str, logfile=None):
str = f'[{datetime.datetime.now()}] {str}'
print(str)
if logfile is not None:
with open(logfile, mode='a') as f:
print(str, file=f)
#################################### Metrics ####################################
@torch.jit.script
def kl_div(p, q, ndims: int=1):
# div = torch.nn.functional.kl_div(p, q, reduction='none')
div = p * (torch.log(p) - torch.log(q))
div[p == 0] = 0 # NaNs quick fix
dims = [i for i in range(-1, -(ndims+1), -1)]
div = div.sum(dims)
return div
@torch.jit.script
def js_div(p, q, ndims: int=1):
m = (p + q) / 2
div = (kl_div(p, m, ndims) + kl_div(q, m, ndims)) / 2
return div
#############################################################################
def rollout(env, policy):
""" Perform rollout of the game and returning episodes in a list """
episode = []
o = env.reset()
r, done, info = env.r, torch.tensor(0.), {"s" : env.s}
episode += [o, r, done]
while not done :
action = policy.action(o, r, done, **info)
o, r, done, info = env.step(action.argmax())
episode += [action, o, r, done]
return episode
def construct_dataset(env, policy, n_samples, regime):
""" Construct a dataset (of n samples) by collecting rollouts using a given
policy in a given environment """
data = []
for _ in range(n_samples):
policy.reset()
episode = rollout(env, policy)
data.append((regime, episode))
return data
#################################################################################
class Dataset(torch.utils.data.Dataset):
def __init__(self, data):
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx]
####################################### Empirical JS #######################################
from environment.env_pomdp import PomdpEnv
def empiricalJS(model_q, model_p, policy, max_length=1, n_iter=500):
settings_mp = model_p.get_settings()
env_p = PomdpEnv(p_s=settings_mp["p_s"], p_or_s=settings_mp["p_or_s"], p_s_sa=settings_mp["p_s_sa"],
categorical_obs = True, max_length=max_length)
settings_mq = model_q.get_settings()
env_q = PomdpEnv(p_s=settings_mq["p_s"], p_or_s=settings_mq["p_or_s"], p_s_sa=settings_mq["p_s_sa"],
categorical_obs = True, max_length=max_length)
n_iter = n_iter
loss_q, loss_p = 0, 0
# E x~q(x) [log(q(x)) - log(q(x) + p(x))]
for _ in range(n_iter):
ep = rollout(env_q, policy)
ep = [t.unsqueeze(0) for t in ep]
regime = torch.tensor(1.).unsqueeze(0)
loss_q += model_q.log_prob(regime, ep)[0]
loss_q -= torch.logsumexp(torch.cat([model_q.log_prob(regime, ep), \
model_p.log_prob(regime, ep)]).unsqueeze(0), 1)[0]
# E x~p(x) [log(p(x)) - log(q(x) + p(x))]
for _ in range(n_iter):
ep = rollout(env_p, policy)
ep = [t.unsqueeze(0) for t in ep]
regime = torch.tensor(1.).unsqueeze(0)
loss_p += model_p.log_prob(regime, ep)[0]
loss_p -= torch.logsumexp(torch.cat([model_q.log_prob(regime, ep), \
model_p.log_prob(regime, ep)]).unsqueeze(0), 1)[0]
return torch.log(torch.tensor(2.)) + (loss_p + loss_q)/(2*n_iter)
def cross_entropy_empirical(model_q, data_p, batch_size, with_done=False):
device = next(model_q.parameters()).device
dataloader_p = torch.utils.data.DataLoader(Dataset(data_p), batch_size=batch_size)
ce = 0
for batch in dataloader_p:
regime, episode = batch
regime, episode = regime.to(device), [tensor.to(device) for tensor in episode]
log_prob_q = model_q.log_prob(regime, episode, with_done=with_done)
ce += -log_prob_q.sum(dim=0)
ce /= len(data_p)
return ce
def kl_div_empirical(model_p, model_q, data_p, batch_size, with_done=False):
assert next(model_q.parameters()).device == next(model_p.parameters()).device
device = next(model_p.parameters()).device
# Build DataLoaders
dataloader_p = torch.utils.data.DataLoader(Dataset(data_p), batch_size=batch_size)
# KL(p|q) = E x~p(x) [log(p(x)) - log(q(x))]
kl_p_q = 0
for batch in dataloader_p:
regime, episode = batch
regime, episode = regime.to(device), [tensor.to(device) for tensor in episode]
log_prob_q = model_q.log_prob(regime, episode, with_done=with_done)
log_prob_p = model_p.log_prob(regime, episode, with_done=with_done)
kl_p_q += (log_prob_p - log_prob_q).sum(dim=0)
kl_p_q /= len(data_p)
return kl_p_q
def js_div_empirical(model_q, model_p, data_q, data_p, batch_size, with_done=False):
assert next(model_q.parameters()).device == next(model_p.parameters()).device
device = next(model_p.parameters()).device
# Build DataLoaders
dataloader_q = torch.utils.data.DataLoader(Dataset(data_q), batch_size=batch_size)
dataloader_p = torch.utils.data.DataLoader(Dataset(data_p), batch_size=batch_size)
# m = (p + q) / 2
# KL(p|m) = E x~p(x) [log(p(x)) - log(q(x) + p(x)) + log(2)]
kl_p_m = 0
for batch in dataloader_p:
regime, episode = batch
regime, episode = regime.to(device), [tensor.to(device) for tensor in episode]
log_prob_q = model_q.log_prob(regime, episode, with_done=with_done)
log_prob_p = model_p.log_prob(regime, episode, with_done=with_done)
log_prob_m = torch.logsumexp(torch.stack([log_prob_q, log_prob_p], dim=0), dim=0) # - torch.log(torch.tensor(2, device=device))
kl_p_m += (log_prob_p - log_prob_m).sum(dim=0)
kl_p_m /= len(data_p)
kl_p_m += torch.log(torch.tensor(2, device=device))
# KL(q|m) = E x~q(x) [log(q(x)) - log(q(x) + p(x)) + log(2)]
kl_q_m = 0
for batch in dataloader_q:
regime, episode = batch
regime, episode = regime.to(device), [tensor.to(device) for tensor in episode]
log_prob_q = model_q.log_prob(regime, episode, with_done=with_done)
log_prob_p = model_p.log_prob(regime, episode, with_done=with_done)
log_prob_m = torch.logsumexp(torch.stack([log_prob_q, log_prob_p], dim=0), dim=0) # - torch.log(torch.tensor(2, device=device))
kl_q_m += (log_prob_q - log_prob_m).sum(dim=0)
kl_q_m /= len(data_q)
kl_q_m += torch.log(torch.tensor(2, device=device))
# JS(p|q) = (KL(p|m) + KL(q|m)) / 2
return (kl_q_m + kl_p_m) / 2
from collections import Counter
def get_sampler_weights(data):
# Get ratio Interventional/Observation
indices_count = Counter([int(source) for source, ep in data])
# If there is more observational data that interventional, re-weigth the train data sampling
if indices_count[0] > indices_count[1] :
#if indices_count[0] > indices_count[1] :
# 1/(2*Nint) for interventional data, 1/(2*Nobs) for obsevational data
weights = [1./(2*indices_count[int(source)]) for source, ep in data]
#weigths = [3./(4*indices_count[int(source)]) if source == torch.tensor(0) else 1./(4*indices_count[int(source)]) for source, ep in train_data]
return weights
else :
return [1 for source, ep in data]