Skip to content

CaicBalt/Mapas

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 

Repository files navigation

Trabajo con mapas

Introducción

En este documento trabajaremos para explorar la identidad de plantas de tacsonia del Perú

trabajando con los datos

Vamos a cargar las librerias

library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.2.2

## Warning: package 'ggplot2' was built under R version 4.2.2

## Warning: package 'tibble' was built under R version 4.2.3

## Warning: package 'tidyr' was built under R version 4.2.2

## Warning: package 'readr' was built under R version 4.2.3

## Warning: package 'purrr' was built under R version 4.2.2

## Warning: package 'dplyr' was built under R version 4.2.2

## Warning: package 'stringr' was built under R version 4.2.2

## Warning: package 'forcats' was built under R version 4.2.2

## Warning: package 'lubridate' was built under R version 4.2.2

## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.0     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the �]8;;http://conflicted.r-lib.org/�conflicted package�]8;;� to force all conflicts to become errors
library(writexl)
## Warning: package 'writexl' was built under R version 4.2.3

Ahora voy a leer los datos

library(readr)
library(writexl)
library(raster)
## Warning: package 'raster' was built under R version 4.2.3

## Loading required package: sp

## Warning: package 'sp' was built under R version 4.2.3

## 
## Attaching package: 'raster'

## The following object is masked from 'package:dplyr':
## 
##     select
library(readxl)
## Warning: package 'readxl' was built under R version 4.2.3
plants <- read_csv("Datos.csv", locale=locale(encoding="latin1"))
## Rows: 1272 Columns: 31

## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (26): PAIS, DEPARTA, ACRO_DEPA, PROVIN, ACRO_PRO, DISTRIT, LOCALI, RAN_L...
## dbl  (4): LONGI, LATI, ELEVA, AÑO_CLAS
## lgl  (1): ESTA_CONS
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Ahora voy a hacer el código que voy a ejecutar. Exploraremos la base de datos. Solo usaremos las columnas de departamento, elevación, especie, longitud y latitud para cada una de las especies.

huamachucoensis <- plants %>% 
  dplyr::filter(ESPECIES == "P. huamachucoensis L.K. Escobar") %>% 
  dplyr::select(ESPECIES, DEPARTA, ELEVA, LONGI, LATI)  
  writexl::write_xlsx(huamachucoensis, "huamachucoensis.xlsx")

nueva <- plants %>% 
  dplyr::filter(ESPECIES == "P. nueva")%>% 
  dplyr::select(ESPECIES, DEPARTA, ELEVA, LONGI, LATI)
writexl::write_xlsx(nueva, "nueva.xlsx")

amazonica <- plants %>% 
  dplyr::filter(ESPECIES == "P. amazonica L. K. Escobar")%>% 
  dplyr::select(ESPECIES, DEPARTA, ELEVA, LONGI, LATI)
writexl::write_xlsx(amazonica, "amazonica.xlsx")

anastomosans <- plants %>% 
  dplyr::filter(ESPECIES == "P. anastomosans (Lamb. Ex Dc.) Killip")%>% 
  dplyr::select(ESPECIES, DEPARTA, ELEVA, LONGI, LATI)
writexl::write_xlsx(anastomosans, "anastomosans.xlsx")

cumbalensis <- plants %>% 
  dplyr::filter(ESPECIES == "P. cumbalensis (H. Karst.) Harms")%>% 
  dplyr::select(ESPECIES, DEPARTA, ELEVA, LONGI, LATI)
writexl::write_xlsx(cumbalensis, "cumbalensis.xlsx")

glaberrima <- plants %>% 
  dplyr::filter(ESPECIES == "P. glaberrima (Juss.) Poir")%>% 
  dplyr::select(ESPECIES, DEPARTA, ELEVA, LONGI, LATI)
writexl::write_xlsx(glaberrima, "glaberrima.xlsx")

gracilens <- plants %>% 
  dplyr::filter(ESPECIES == "P. gracilens (A. Gray) Harms")%>% 
  dplyr::select(ESPECIES, DEPARTA, ELEVA, LONGI, LATI)
writexl::write_xlsx(gracilens, "gracilens.xlsx")

kuethiana <- plants %>% 
  dplyr::filter(ESPECIES == "P. kuethiana B. Esquerre")%>% 
  dplyr::select(ESPECIES, DEPARTA, ELEVA, LONGI, LATI)
writexl::write_xlsx(kuethiana, "kuethiana.xlsx")

lanceolata <- plants %>% 
  dplyr::filter(ESPECIES == "P. lanceolata (Mast.) Harms")%>% 
  dplyr::select(ESPECIES, DEPARTA, ELEVA, LONGI, LATI)
writexl::write_xlsx(lanceolata, "lanceolata.xlsx")

mandonii <- plants %>% 
  dplyr::filter(ESPECIES == "P. mandonii (Mast.) Killip")%>% 
  dplyr::select(ESPECIES, DEPARTA, ELEVA, LONGI, LATI)
writexl::write_xlsx(mandonii, "mandonii.xlsx")

manicata <- plants %>% 
  dplyr::filter(ESPECIES == "P. manicata (Juss.) Pers.")%>% 
  dplyr::select(ESPECIES, DEPARTA, ELEVA, LONGI, LATI)
writexl::write_xlsx(manicata, "manicata.xlsx")

mathewsii <- plants %>% 
  dplyr::filter(ESPECIES == "P. mathewsii (Mast.) Killip")%>% 
  dplyr::select(ESPECIES, DEPARTA, ELEVA, LONGI, LATI)
writexl::write_xlsx(mathewsii, "mathewsii.xlsx")

mixta <- plants %>% 
  dplyr::filter(ESPECIES == "P. mixta L.f.")%>% 
  dplyr::select(ESPECIES, DEPARTA, ELEVA, LONGI, LATI)
writexl::write_xlsx(mixta, "mixta.xlsx")

parvifolia <- plants %>% 
  dplyr::filter(ESPECIES == "P. parvifolia (DC.) Harms")%>% 
  dplyr::select(ESPECIES, DEPARTA, ELEVA, LONGI, LATI)
writexl::write_xlsx(parvifolia, "parvifolia.xlsx")

peduncularis <- plants %>% 
  dplyr::filter(ESPECIES == "P. peduncularis Cav.")%>% 
  dplyr::select(ESPECIES, DEPARTA, ELEVA, LONGI, LATI)
writexl::write_xlsx(peduncularis, "peduncularis.xlsx")

pinnatistipula <- plants %>% 
  dplyr::filter(ESPECIES == "P. pinnatistipula Cav.")%>% 
  dplyr::select(ESPECIES, DEPARTA, ELEVA, LONGI, LATI)
writexl::write_xlsx(pinnatistipula, "pinnatistipula.xlsx")

runa <- plants %>% 
  dplyr::filter(ESPECIES == "P. runa L. K Escobar")%>% 
  dplyr::select(ESPECIES, DEPARTA, ELEVA, LONGI, LATI)
writexl::write_xlsx(runa, "runa.xlsx")

salpoense <- plants %>% 
  dplyr::filter(ESPECIES == "P. salpoense S. Leiva & Tantalean")%>% 
  dplyr::select(ESPECIES, DEPARTA, ELEVA, LONGI, LATI)
writexl::write_xlsx(salpoense, "salpoense.xlsx")

tarminiana <- plants %>% 
  dplyr::filter(ESPECIES == "P. tarminiana Coppens y V. E. Barney")%>% 
  dplyr::select(ESPECIES, DEPARTA, ELEVA, LONGI, LATI)
writexl::write_xlsx(tarminiana, "tarminiana.xlsx")

trifoliata <- plants %>% 
  dplyr::filter(ESPECIES == "P. trifoliata Cav.")%>% 
  dplyr::select(ESPECIES, DEPARTA, ELEVA, LONGI, LATI) 
writexl::write_xlsx(trifoliata, "trifoliata.xlsx")

tripartita <- plants %>% 
  dplyr::filter(ESPECIES == "P. tripartita (Juss.) Poir.")%>% 
  dplyr::select(ESPECIES, DEPARTA, ELEVA, LONGI, LATI)
writexl::write_xlsx(tripartita, "tripartita.xlsx")

trisecta <- plants %>% 
  dplyr::filter(ESPECIES == "P. trisecta Mast.")%>% 
  dplyr::select(ESPECIES, DEPARTA, ELEVA, LONGI, LATI)
writexl::write_xlsx(trisecta, "trisecta.xlsx")

weberbaueri <- plants %>% 
  dplyr::filter(ESPECIES == "P. weberbaueri Harms")%>% 
  dplyr::select(ESPECIES, DEPARTA, ELEVA, LONGI, LATI)
writexl::write_xlsx(weberbaueri, "weberbaueri.xlsx")

weigendii <- plants %>% 
  dplyr::filter(ESPECIES == "P. weigendii T. Ulmer & Schwerdtferger")%>% 
  dplyr::select(ESPECIES, DEPARTA, ELEVA, LONGI, LATI)
writexl::write_xlsx(weigendii, "weigendii.xlsx")

xrosea <- plants %>% 
  dplyr::filter(ESPECIES == "P. x rosea (H. Karst.) Killip")%>% 
  dplyr::select(ESPECIES, DEPARTA, ELEVA, LONGI, LATI)
writexl::write_xlsx(xrosea, "xrosea.xlsx")

##Ahora creamos shapefile todas las especies por separado

huamachucoensis <- read_xlsx('huamachucoensis.xlsx')
xy <- huamachucoensis[,4:5]
huamachucoensis_shp <- SpatialPointsDataFrame(coords = xy, data = huamachucoensis)
proj4string(huamachucoensis_shp) = CRS('+proj=longlat + datum=WGS84 +no_defs')
PERU <- shapefile('PER_adm1.shp')
plot(PERU)
plot(huamachucoensis_shp, ad=TRUE)

shapefile(huamachucoensis_shp, 'huamachucoensis.shp')

amazonica <- read_xlsx('amazonica.xlsx')
xy <- amazonica[,4:5]
amazonica_shp <- SpatialPointsDataFrame(coords = xy, data = amazonica)
proj4string(amazonica_shp) = CRS('+proj=longlat + datum=WGS84 +no_defs')
PERU <- shapefile('PER_adm1.shp')
plot(PERU)
plot(amazonica_shp, ad=TRUE)

shapefile(amazonica_shp, 'amazonica.shp')

anastomosans <- read_xlsx('anastomosans.xlsx')
xy <- anastomosans[,4:5]
anastomosans_shp <- SpatialPointsDataFrame(coords = xy, data = anastomosans)
proj4string(anastomosans_shp) = CRS('+proj=longlat + datum=WGS84 +no_defs')
PERU <- shapefile('PER_adm1.shp')
plot(PERU)
plot(anastomosans_shp, ad=TRUE)

shapefile(anastomosans_shp, 'anastomosans.shp')

cumbalensis <- read_xlsx('cumbalensis.xlsx')
xy <- cumbalensis[,4:5]
cumbalensis_shp <- SpatialPointsDataFrame(coords = xy, data = cumbalensis)
proj4string(cumbalensis_shp) = CRS('+proj=longlat + datum=WGS84 +no_defs')
PERU <- shapefile('PER_adm1.shp')
plot(PERU)
plot(cumbalensis_shp, ad=TRUE)

shapefile(cumbalensis_shp, 'cumbalensis.shp')

glaberrima <- read_xlsx('glaberrima.xlsx')
xy <- glaberrima[,4:5]
glaberrima_shp <- SpatialPointsDataFrame(coords = xy, data = glaberrima)
proj4string(glaberrima_shp) = CRS('+proj=longlat + datum=WGS84 +no_defs')
PERU <- shapefile('PER_adm1.shp')
plot(PERU)
plot(glaberrima_shp, ad=TRUE)

shapefile(glaberrima_shp, 'glaberrima.shp')

gracilens <- read_xlsx('gracilens.xlsx')
xy <- gracilens[,4:5]
gracilens_shp <- SpatialPointsDataFrame(coords = xy, data = gracilens)
proj4string(gracilens_shp) = CRS('+proj=longlat + datum=WGS84 +no_defs')
PERU <- shapefile('PER_adm1.shp')
plot(PERU)
plot(gracilens_shp, ad=TRUE)

shapefile(gracilens_shp, 'gracilens.shp')

kuethiana <- read_xlsx('kuethiana.xlsx')
xy <- kuethiana[,4:5]
kuethiana_shp <- SpatialPointsDataFrame(coords = xy, data = kuethiana)
proj4string(kuethiana_shp) = CRS('+proj=longlat + datum=WGS84 +no_defs')
PERU <- shapefile('PER_adm1.shp')
plot(PERU)
plot(kuethiana_shp, ad=TRUE)

shapefile(kuethiana_shp, 'kuethiana.shp')

lanceolata <- read_xlsx('lanceolata.xlsx')
xy <- lanceolata[,4:5]
lanceolata_shp <- SpatialPointsDataFrame(coords = xy, data = lanceolata)
proj4string(lanceolata_shp) = CRS('+proj=longlat + datum=WGS84 +no_defs')
PERU <- shapefile('PER_adm1.shp')
plot(PERU)
plot(lanceolata_shp, ad=TRUE)

shapefile(lanceolata_shp, 'lanceolata.shp')

mandonii <- read_xlsx('mandonii.xlsx')
xy <- mandonii[,4:5]
mandonii_shp <- SpatialPointsDataFrame(coords = xy, data = mandonii)
proj4string(mandonii_shp) = CRS('+proj=longlat + datum=WGS84 +no_defs')
PERU <- shapefile('PER_adm1.shp')
plot(PERU)
plot(mandonii_shp, ad=TRUE)

shapefile(mandonii_shp, 'mandonii.shp')

mathewsii <- read_xlsx('mathewsii.xlsx')
xy <- mathewsii[,4:5]
mathewsii_shp <- SpatialPointsDataFrame(coords = xy, data = mathewsii)
proj4string(mathewsii_shp) = CRS('+proj=longlat + datum=WGS84 +no_defs')
PERU <- shapefile('PER_adm1.shp')
plot(PERU)
plot(mathewsii_shp, ad=TRUE)

shapefile(mathewsii_shp, 'mathewsii.shp')

mixta <- read_xlsx('mixta.xlsx')
xy <- mixta[,4:5]
mixta_shp <- SpatialPointsDataFrame(coords = xy, data = mixta)
proj4string(mixta_shp) = CRS('+proj=longlat + datum=WGS84 +no_defs')
PERU <- shapefile('PER_adm1.shp')
plot(PERU)
plot(mixta_shp, ad=TRUE)

shapefile(mixta_shp, 'mixta.shp')

nueva <- read_xlsx('nueva.xlsx')
xy <- nueva [,4:5]
nueva_shp <- SpatialPointsDataFrame(coords = xy, data = nueva)
proj4string(nueva_shp) = CRS('+proj=longlat + datum=WGS84 +no_defs')
PERU <- shapefile('PER_adm1.shp')
plot(PERU)
plot(nueva_shp, ad=TRUE)

shapefile(nueva_shp, 'nueva.shp')

parvifolia <- read_xlsx('parvifolia.xlsx')
xy <- parvifolia [,4:5]
parvifolia_shp <- SpatialPointsDataFrame(coords = xy, data = parvifolia)
proj4string(parvifolia_shp) = CRS('+proj=longlat + datum=WGS84 +no_defs')
PERU <- shapefile('PER_adm1.shp')
plot(PERU)
plot(parvifolia_shp, ad=TRUE)

shapefile(parvifolia_shp, 'parvifolia.shp')

peduncularis <- read_xlsx('peduncularis.xlsx')
xy <- peduncularis [,4:5]
peduncularis_shp <- SpatialPointsDataFrame(coords = xy, data = peduncularis)
proj4string(peduncularis_shp) = CRS('+proj=longlat + datum=WGS84 +no_defs')
PERU <- shapefile('PER_adm1.shp')
plot(PERU)
plot(peduncularis_shp, ad=TRUE)

shapefile(peduncularis_shp, 'peduncularis.shp')

pinnatistipula <- read_xlsx('pinnatistipula.xlsx')
xy <- pinnatistipula [,4:5]
pinnatistipula_shp <- SpatialPointsDataFrame(coords = xy, data = pinnatistipula)
proj4string(pinnatistipula_shp) = CRS('+proj=longlat + datum=WGS84 +no_defs')
PERU <- shapefile('PER_adm1.shp')
plot(PERU)
plot(pinnatistipula_shp, ad=TRUE)

shapefile(pinnatistipula_shp, 'pinnatistipula.shp')

runa <- read_xlsx('runa.xlsx')
xy <- runa [,4:5]
runa_shp <- SpatialPointsDataFrame(coords = xy, data = runa)
proj4string(runa_shp) = CRS('+proj=longlat + datum=WGS84 +no_defs')
PERU <- shapefile('PER_adm1.shp')
plot(PERU)
plot(runa_shp, ad=TRUE)

shapefile(runa_shp, 'runa.shp')

salpoense <- read_xlsx('salpoense.xlsx')
xy <- salpoense [,4:5]
salpoense_shp <- SpatialPointsDataFrame(coords = xy, data = salpoense)
proj4string(salpoense_shp) = CRS('+proj=longlat + datum=WGS84 +no_defs')
PERU <- shapefile('PER_adm1.shp')
plot(PERU)
plot(salpoense_shp, ad=TRUE)

shapefile(salpoense_shp, 'salpoense.shp')

tarminiana <- read_xlsx('tarminiana.xlsx')
xy <- tarminiana [,4:5]
tarminiana_shp <- SpatialPointsDataFrame(coords = xy, data = tarminiana)
proj4string(tarminiana_shp) = CRS('+proj=longlat + datum=WGS84 +no_defs')
PERU <- shapefile('PER_adm1.shp')
plot(PERU)
plot(tarminiana_shp, ad=TRUE)

shapefile(tarminiana_shp, 'tarminiana.shp')

trifoliata <- read_xlsx('trifoliata.xlsx')
xy <- trifoliata [,4:5]
trifoliata_shp <- SpatialPointsDataFrame(coords = xy, data = trifoliata)
proj4string(trifoliata_shp) = CRS('+proj=longlat + datum=WGS84 +no_defs')
PERU <- shapefile('PER_adm1.shp')
plot(PERU)
plot(trifoliata_shp, ad=TRUE)

shapefile(trifoliata_shp, 'trifoliata.shp')

tripartita <- read_xlsx('tripartita.xlsx')
xy <- tripartita [,4:5]
tripartita_shp <- SpatialPointsDataFrame(coords = xy, data = tripartita)
proj4string(tripartita_shp) = CRS('+proj=longlat + datum=WGS84 +no_defs')
PERU <- shapefile('PER_adm1.shp')
plot(PERU)
plot(tripartita_shp, ad=TRUE)

shapefile(tripartita_shp, 'tripartita.shp')

trisecta <- read_xlsx('trisecta.xlsx')
xy <- trisecta [,4:5]
trisecta_shp <- SpatialPointsDataFrame(coords = xy, data = trisecta)
proj4string(trisecta_shp) = CRS('+proj=longlat + datum=WGS84 +no_defs')
PERU <- shapefile('PER_adm1.shp')
plot(PERU)
plot(trisecta_shp, ad=TRUE)

shapefile(trisecta_shp, 'trisecta.shp')

weberbaueri <- read_xlsx('weberbaueri.xlsx')
xy <- weberbaueri [,4:5]
weberbaueri_shp <- SpatialPointsDataFrame(coords = xy, data = weberbaueri)
proj4string(weberbaueri_shp) = CRS('+proj=longlat + datum=WGS84 +no_defs')
PERU <- shapefile('PER_adm1.shp')
plot(PERU)
plot(weberbaueri_shp, ad=TRUE)

shapefile(weberbaueri_shp, 'weberbaueri.shp')

weigendii <- read_xlsx('weigendii.xlsx')
xy <- weigendii [,4:5]
weigendii_shp <- SpatialPointsDataFrame(coords = xy, data = weigendii)
proj4string(weigendii_shp) = CRS('+proj=longlat + datum=WGS84 +no_defs')
PERU <- shapefile('PER_adm1.shp')
plot(PERU)
plot(weigendii_shp, ad=TRUE)

shapefile(weigendii_shp, 'weigendii.shp')

xrosea <- read_xlsx('xrosea.xlsx')
xy <- xrosea [,4:5]
xrosea_shp <- SpatialPointsDataFrame(coords = xy, data = xrosea)
proj4string(xrosea_shp) = CRS('+proj=longlat + datum=WGS84 +no_defs')
PERU <- shapefile('PER_adm1.shp')
plot(PERU)
plot(xrosea_shp, ad=TRUE)

shapefile(xrosea_shp, 'xrosea.shp')
## GitHub Documents

This is an R Markdown format used for publishing markdown documents to GitHub. When you click the **Knit** button all R code chunks are run and a markdown file (.md) suitable for publishing to GitHub is generated.

## Including Code

You can include R code in the document as follows:


```r
summary(cars)

##      speed           dist       
##  Min.   : 4.0   Min.   :  2.00  
##  1st Qu.:12.0   1st Qu.: 26.00  
##  Median :15.0   Median : 36.00  
##  Mean   :15.4   Mean   : 42.98  
##  3rd Qu.:19.0   3rd Qu.: 56.00  
##  Max.   :25.0   Max.   :120.00

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

About

práctica de mapas en R

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages