Skip to content

This is a complete package of recent deep learning methods for 3D point clouds in pytorch (with pretrained models).

License

Notifications You must be signed in to change notification settings

Candy-Crusher/learning3d

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

76 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Learning3D: A Modern Library for Deep Learning on 3D Point Clouds Data.

Documentation | Blog | Demo

Learning3D is an open-source library that supports the development of deep learning algorithms that deal with 3D data. The Learning3D exposes a set of state of art deep neural networks in python. A modular code has been provided for further development. We welcome contributions from the open-source community.

Latest News:

  1. [24 Dec. 2020]: MaskNet is now ready to enhance the performance of registration algorithms in learning3d for occluded point clouds.
  2. [24 Dec. 2020]: Loss based on the predicted and ground truth correspondences is added in learning3d after consideration of Correspondence Matrices are Underrated paper.
  3. [24 Dec. 2020]: PointConv, latent feature estimation using convolutions on point clouds is now available in learning3d.
  4. [16 Oct. 2020]: DeepGMR, registration using gaussian mixture models is now available in learning3d
  5. [14 Oct. 2020]: Now, use your own data in learning3d. (Check out UserData functionality!)

Available Computer Vision Algorithms in Learning3D

Sr. No. Tasks Algorithms
1 Classification PointNet, DGCNN, PPFNet, PointConv
2 Segmentation PointNet, DGCNN
3 Reconstruction Point Completion Network (PCN)
4 Registration PointNetLK, PCRNet, DCP, PRNet, RPM-Net, DeepGMR
5 Flow Estimation FlowNet3D
6 Inlier Estimation MaskNet

Available Pretrained Models

  1. PointNet
  2. PCN
  3. PointNetLK
  4. PCRNet
  5. DCP
  6. PRNet
  7. FlowNet3D
  8. RPM-Net (clean-trained.pth, noisy-trained.pth, partial-pretrained.pth)
  9. DeepGMR
  10. PointConv (Download from this link)
  11. MaskNet

Available Datasets

  1. ModelNet40

Available Loss Functions

  1. Classification Loss (Cross Entropy)
  2. Registration Losses (FrobeniusNormLoss, RMSEFeaturesLoss)
  3. Distance Losses (Chamfer Distance, Earth Mover's Distance)
  4. Correspondence Loss (based on this paper)

Technical Details

Supported OS

  1. Ubuntu 16.04
  2. Ubuntu 18.04
  3. Linux Mint

Requirements

  1. CUDA 10.0 or higher
  2. Pytorch 1.3 or higher

How to use this library?

Important Note: Clone this repository in your project. Please don't add your codes in "learning3d" folder.

  1. All networks are defined in the module "models".
  2. All loss functions are defined in the module "losses".
  3. Data loaders are pre-defined in data_utils/dataloaders.py file.
  4. All pretrained models are provided in learning3d/pretrained folder.

Documentation

B: Batch Size, N: No. of points and C: Channels.

Use of Point Embedding Networks:

from learning3d.models import PointNet, DGCNN, PPFNet
pn = PointNet(emb_dims=1024, input_shape='bnc', use_bn=False)
dgcnn = DGCNN(emb_dims=1024, input_shape='bnc')
ppf = PPFNet(features=['ppf', 'dxyz', 'xyz'], emb_dims=96, radius='0.3', num_neighbours=64)

Sr. No. Variable Data type Shape Choices Use
1. emb_dims Integer Scalar 1024, 512 Size of feature vector for the each point
2. input_shape String - 'bnc', 'bcn' Shape of input point cloud
3. output tensor BxCxN - High dimensional embeddings for each point
4. features List of Strings - ['ppf', 'dxyz', 'xyz'] Use of various features
5. radius Float Scalar 0.3 Radius of cluster for computing local features
6. num_neighbours Integer Scalar 64 Maximum number of points to consider per cluster

Use of Classification / Segmentation Network:

from learning3d.models import Classifier, PointNet, Segmentation
classifier = Classifier(feature_model=PointNet(), num_classes=40)
seg = Segmentation(feature_model=PointNet(), num_classes=40)

Sr. No. Variable Data type Shape Choices Use
1. feature_model Object - PointNet / DGCNN Point cloud embedding network
2. num_classes Integer Scalar 10, 40 Number of object categories to be classified
3. output tensor Classification: Bx40, Segmentation: BxNx40 10, 40 Probabilities of each category or each point

Use of Registration Networks:

from learning3d.models import PointNet, PointNetLK, DCP, iPCRNet, PRNet, PPFNet, RPMNet
pnlk = PointNetLK(feature_model=PointNet(), delta=1e-02, xtol=1e-07, p0_zero_mean=True, p1_zero_mean=True, pooling='max')
dcp = DCP(feature_model=PointNet(), pointer_='transformer', head='svd')
pcrnet = iPCRNet(feature_moodel=PointNet(), pooling='max')
rpmnet = RPMNet(feature_model=PPFNet())
deepgmr = DeepGMR(use_rri=True, feature_model=PointNet(), nearest_neighbors=20)

Sr. No. Variable Data type Choices Use Algorithm
1. feature_model Object PointNet / DGCNN Point cloud embedding network PointNetLK
2. delta Float Scalar Parameter to calculate approximate jacobian PointNetLK
3. xtol Float Scalar Check tolerance to stop iterations PointNetLK
4. p0_zero_mean Boolean True/False Subtract mean from template point cloud PointNetLK
5. p1_zero_mean Boolean True/False Subtract mean from source point cloud PointNetLK
6. pooling String 'max' / 'avg' Type of pooling used to get global feature vectror PointNetLK
7. pointer_ String 'transformer' / 'identity' Choice for Transformer/Attention network DCP
8. head String 'svd' / 'mlp' Choice of module to estimate registration params DCP
9. use_rri Boolean True/False Use nearest neighbors to estimate point cloud features. DeepGMR
10. nearest_neighbores Integer 20/any integer Give number of nearest neighbors used to estimate features DeepGMR

Use of Inlier Estimation Network (MaskNet):

from learning3d.models import MaskNet, PointNet
masknet = MaskNet(feature_model=PointNet(), is_training=True)

Sr. No. Variable Data type Choices Use
1. feature_model Object PointNet / DGCNN Point cloud embedding network
2. is_training Boolean True / False Specify if the network will undergo training or testing

Use of Point Completion Network:

from learning3d.models import PCN
pcn = PCN(emb_dims=1024, input_shape='bnc', num_coarse=1024, grid_size=4, detailed_output=True)

Sr. No. Variable Data type Choices Use
1. emb_dims Integer 1024, 512 Size of feature vector for each point
2. input_shape String 'bnc' / 'bcn' Shape of input point cloud
3. num_coarse Integer 1024 Shape of output point cloud
4. grid_size Integer 4, 8, 16 Size of grid used to produce detailed output
5. detailed_output Boolean True / False Choice for additional module to create detailed output point cloud

Use of PointConv:

Use the following to create pretrained model provided by authors.

from learning3d.models import create_pointconv
PointConv = create_pointconv(classifier=True, pretrained='path of checkpoint')
ptconv = PointConv(emb_dims=1024, input_shape='bnc', input_channel_dim=6, classifier=True)

OR
Use the following to create your own PointConv model.

PointConv = create_pointconv(classifier=False, pretrained=None)
ptconv = PointConv(emb_dims=1024, input_shape='bnc', input_channel_dim=3, classifier=True)

PointConv variable is a class. Users can use it to create a sub-class to override create_classifier and create_structure methods in order to change PointConv's network architecture.

Sr. No. Variable Data type Choices Use
1. emb_dims Integer 1024, 512 Size of feature vector for each point
2. input_shape String 'bnc' / 'bcn' Shape of input point cloud
3. input_channel_dim Integer 3/6 Define if point cloud contains only xyz co-ordinates or normals and colors as well
4. classifier Boolean True / False Choose if you want to use a classifier with PointConv
5. pretrained Boolean String Give path of the pretrained classifier model (only use it for weights given by authors)

Use of Flow Estimation Network:

from learning3d.models import FlowNet3D
flownet = FlowNet3D()

Use of Data Loaders:

from learning3d.data_utils import ModelNet40Data, ClassificationData, RegistrationData, FlowData
modelnet40 = ModelNet40Data(train=True, num_points=1024, download=True)
classification_data = ClassificationData(data_class=ModelNet40Data())
registration_data = RegistrationData(algorithm='PointNetLK', data_class=ModelNet40Data(), partial_source=False, partial_template=False, noise=False)
flow_data = FlowData()

Sr. No. Variable Data type Choices Use
1. train Boolean True / False Split data as train/test set
2. num_points Integer 1024 Number of points in each point cloud
3. download Boolean True / False If data not available then download it
4. data_class Object - Specify which dataset to use
5. algorithm String 'PointNetLK', 'PCRNet', 'DCP', 'iPCRNet' Algorithm used for registration
6. partial_source Boolean True / False Create partial source point cloud
7. partial_template Boolean True / False Create partial template point cloud
8. noise Boolean True / False Add noise in source point cloud

Use Your Own Data:

from learning3d.data_utils import UserData
dataset = UserData(application, data_dict)

Sr. No. Application Required Key Respective Value
1. 'classification' 'pcs' Point Clouds (BxNx3)
'labels' Ground Truth Class Labels (BxN)
2. 'registration' 'template' Template Point Clouds (BxNx3)
'source' Source Point Clouds (BxNx3)
'transformation' Ground Truth Transformation (Bx4x4)
3. 'flow_estimation' 'frame1' Point Clouds (BxNx3)
'frame2' Point Clouds (BxNx3)
'flow' Ground Truth Flow Vector (BxNx3)

Use of Loss Functions:

from learning3d.losses import RMSEFeaturesLoss, FrobeniusNormLoss, ClassificationLoss, EMDLoss, ChamferDistanceLoss, CorrespondenceLoss
rmse = RMSEFeaturesLoss()
fn_loss = FrobeniusNormLoss()
classification_loss = ClassificationLoss()
emd = EMDLoss()
cd = ChamferDistanceLoss()
corr = CorrespondenceLoss()

Sr. No. Loss Type Use
1. RMSEFeaturesLoss Used to find root mean square value between two global feature vectors of point clouds
2. FrobeniusNormLoss Used to find frobenius norm between two transfromation matrices
3. ClassificationLoss Used to calculate cross-entropy loss
4. EMDLoss Earth Mover's distance between two given point clouds
5. ChamferDistanceLoss Chamfer's distance between two given point clouds
6. CorrespondenceLoss Computes cross entropy loss using the predicted correspondence and ground truth correspondence for each source point

To run codes from examples:

  1. Copy the file from "examples" folder outside of the directory "learning3d"
  2. Now, run the file. (ex. python test_pointnet.py)
  • Your Directory/Location
    • learning3d
    • test_pointnet.py

References:

  1. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
  2. Dynamic Graph CNN for Learning on Point Clouds
  3. PPFNet: Global Context Aware Local Features for Robust 3D Point Matching
  4. PointConv: Deep Convolutional Networks on 3D Point Clouds
  5. PointNetLK: Robust & Efficient Point Cloud Registration using PointNet
  6. PCRNet: Point Cloud Registration Network using PointNet Encoding
  7. Deep Closest Point: Learning Representations for Point Cloud Registration
  8. PRNet: Self-Supervised Learning for Partial-to-Partial Registration
  9. FlowNet3D: Learning Scene Flow in 3D Point Clouds
  10. PCN: Point Completion Network
  11. RPM-Net: Robust Point Matching using Learned Features
  12. 3D ShapeNets: A Deep Representation for Volumetric Shapes
  13. DeepGMR: Learning Latent Gaussian Mixture Models for Registration
  14. CMU: Correspondence Matrices are Underrated
  15. MaskNet: A Fully-Convolutional Network to Estimate Inlier Points

About

This is a complete package of recent deep learning methods for 3D point clouds in pytorch (with pretrained models).

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 79.1%
  • Cuda 13.7%
  • C++ 7.2%