-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
binomial theorem solution fixes + tag fixes (#38)
* added f2024 fall exam category, fixed w2022 final q6 solution * improved NBT solutions, fixed an incorrect tag * fixed an additional tag * fixed minor logical error * branch is now accurate
- Loading branch information
Showing
10 changed files
with
55 additions
and
35 deletions.
There are no files selected for viewing
10 changes: 5 additions & 5 deletions
10
src/content/questions/comp2804/2014-fall-midterm/7/solution.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,11 +1,11 @@ | ||
${(5x-36)}^{100}$ | ||
|
||
$=\sum^{100}_{k=0} \binom{100}{k}{(5x)}^k {(-3y)}^{n-k}$ | ||
$ = \sum^{100}_{k=0} \binom{100}{k} {(5x)}^{n-k} {(-3y)}^{k} $ | ||
|
||
$=\binom{100}{20}{(5x)}^{20} {(-3y)}^{80}$ | ||
We only consider $k=80$, as it results in $y^{80}$. | ||
|
||
$=\binom{100}{20}5^{20} 3^{80} x^{20} y^{80}$ | ||
$ = \binom{100}{80} \cdot {(5x)}^{100-80} \cdot {(-3y)}^{80} $ | ||
|
||
$=\binom{100}{80}5^{20} 3^{80} x^{20} y^{80}$ | ||
$ = \binom{100}{80} \cdot 5^{20} \cdot {(-3)}^{80} \cdot x^{20} \cdot y^{80} $ | ||
|
||
$=\binom{100}{80}5^{20} 3^{80}$ (this is the coefficient) | ||
$ = \binom{100}{80} \cdot 5^{20} \cdot 3^{80} $ (final answer, i.e. the coefficient of $x^{20} y^{80}$) |
12 changes: 8 additions & 4 deletions
12
src/content/questions/comp2804/2015-fall-final/4/solution.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,7 +1,11 @@ | ||
$ = \sum^{20}\_{k=0} \binom{20}{k} {(-3x)}^{k} {(5y)}^{20-k} $ | ||
$ = \sum^{20}_{k=0} \binom{20}{k} {(-3x)}^{n-k} {(5y)}^{k} $ | ||
|
||
$ = \binom{20}{15} {(-3)}^{15} {5}^{5} x^{15} y^5 $ | ||
We only consider $k=5$, as it results in $y^{5}$. | ||
|
||
$ = - \binom{20}{15} {(3)}^{15} {5}^{5} x^{15} y^5 $ | ||
$ = \binom{20}{5} \cdot {(-3x)}^{20-5} \cdot {(5y)}^{5} $ | ||
|
||
Thus, the coefficient of $x^{15}y^{5}$ in the expansion of ${(-3x + 5y)}^{20}$ is $ - \binom{20}{15} {(3)}^{15} {5}^{5} $ | ||
$ = \binom{20}{5} \cdot {(-3)}^{15} \cdot {5}^{5} \cdot x^{15} \cdot y^5 $ | ||
|
||
$ = - \binom{20}{5} \cdot {3}^{15} \cdot {5}^{5} \cdot x^{15} \cdot y^5 $ | ||
|
||
Thus, the coefficient of $x^{15}y^{5}$ in the expansion of ${(-3x + 5y)}^{20}$ is $ - \binom{20}{5} \cdot {3}^{15} \cdot {5}^{5} $ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
12 changes: 9 additions & 3 deletions
12
src/content/questions/comp2804/2015-winter-final/4/solution.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,7 +1,13 @@ | ||
$ {(2x-7y)}^{15} $ | ||
|
||
$= \sum\_{k=4}^{15} \binom{15}{k} {(2x)}^{k} {(-7y)}^{15-k} $ | ||
$ = \sum_{k=0}^{15} \binom{15}{k} {(2x)}^{n-k} {(-7y)}^{k} $ | ||
|
||
$ = \binom{15}{4} 2^{4} {(-7)}^{11} x^4 y^{11}$ | ||
We only consider $k=11$, as it results in $y^{11}$. | ||
|
||
$ = - \binom{15}{4} 2^{4} {(7)}^{11} $ | ||
$ = \binom{15}{11} \cdot {(2x)}^{15-11} \cdot {(-7y)}^{11} $ | ||
|
||
$ = \binom{15}{11} \cdot 2^{4} \cdot {(-7)}^{11} \cdot x^4 \cdot y^{11} $ | ||
|
||
$ = - \binom{15}{4} \cdot 2^{4} \cdot 7^{11} \cdot x^4 \cdot y^{11} $ | ||
|
||
Thus, the coefficient of $ x^{4}y^{11} $ in the expansion of $ {(2x-7y)}^{15} $ is $ - \binom{15}{11} \cdot {2}^{4} \cdot {7}^{11} $ |
12 changes: 8 additions & 4 deletions
12
src/content/questions/comp2804/2016-fall-midterm/9/solution.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,7 +1,11 @@ | ||
$ = \sum^{50}\_{k=0} \binom{50}{k} {(5x)}^{50-k} {(-7y)}^k $ | ||
$ = \sum^{50}_{k=0} \binom{50}{k} {(5x)}^{n-k} {(-7y)}^k $ | ||
|
||
$ = \sum^{50}\_{k=0} \binom{50}{26} {(5x)}^{50-26} {(-7y)}^k $ | ||
We only consider $k=26$, as it results in $y^{26}$. | ||
|
||
$ = \binom{50}{24} {(5)}^{24} x^{24} {(-7)}^{26} y^{26} $ | ||
$ = \binom{50}{26} \cdot {(5x)}^{50-26} \cdot {(-7y)}^{26} $ | ||
|
||
$ = \binom{50}{26} {(5)}^{24} {(-7)}^{26} x^{24} y^{26} $ | ||
$ = \binom{50}{26} \cdot {(5)}^{24} \cdot x^{24} \cdot {(-7)}^{26} \cdot y^{26} $ | ||
|
||
$ = \binom{50}{26} \cdot 5^{24} \cdot 7^{26} \cdot x^{24} \cdot y^{26} $ | ||
|
||
Thus, the coefficient is $ \binom{50}{26} \cdot 5^{24} \cdot 7^{26} $ |
12 changes: 6 additions & 6 deletions
12
src/content/questions/comp2804/2017-fall-midterm/9/solution.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,11 +1,11 @@ | ||
$ = \sum^{100}\_{k=0} \binom{100}{k} {(7x)}^{k} {(-13y)}^{100-k} $ | ||
$ = \sum^{100}_{k=0} \binom{100}{k} {(7x)}^{n-k} {(-13y)}^{k} $ | ||
|
||
$ = \sum^{100}\_{k=0} \binom{100}{20} {(7x)}^{20} {(-13y)}^{100-20} $ | ||
We only consider $k=80$, as it results in $y^{80}$. | ||
|
||
$ = \binom{100}{20} {(7)}^{20} x^{20} {(-13)}^{80} y^{80} $ | ||
$ = \binom{100}{80} \cdot {(7x)}^{100-80} \cdot {(-13y)}^{80} $ | ||
|
||
$ = \binom{100}{20} {(7)}^{20} {(-13)}^{80} x^{20} y^{80} $ | ||
$ = \binom{100}{80} \cdot {(7)}^{20} \cdot x^{20} \cdot {(-13)}^{80} \cdot y^{80} $ | ||
|
||
$ = \binom{100}{20} {(7)}^{20} {(13)}^{80} x^{20} y^{80} $ | ||
$ = \binom{100}{80} \cdot 7^{20} \cdot 13^{80} \cdot x^{20} \cdot y^{80} $ | ||
|
||
Thus, the coefficient is $ \binom{100}{20} {(7)}^{20} {(13)}^{80} $ | ||
Thus, the coefficient is $ \binom{100}{80} \cdot 7^{20} \cdot 13^{80} $ |
12 changes: 8 additions & 4 deletions
12
src/content/questions/comp2804/2018-fall-final/6/solution.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,7 +1,11 @@ | ||
$ = \sum\_{k = 35}^{55} \binom{55}{k} {(5x)}^{k} {(-3y)}^{n-k} $ | ||
$ = \sum_{k=0}^{55} \binom{55}{k} {(5x)}^{n-k} {(-3y)}^{k} $ | ||
|
||
$ = \binom{55}{20} {(5x)}^{20} {(-3y)}^{35} $ | ||
We only consider $k=35$, as it results in $y^{35}$. | ||
|
||
$ = - \binom{55}{20} 5^{20} 3^{35} x^{20} y^{35}$ | ||
$ = \binom{55}{35} \cdot {(5x)}^{55-35} \cdot {(-3y)}^{35} $ | ||
|
||
The coefficient is $ - \binom{55}{20} 5^{20} 3^{35} $ | ||
$ = \binom{55}{35} \cdot 5^{20} \cdot {(-3)}^{35} \cdot x^{20} \cdot y^{35}$ | ||
|
||
$ = - \binom{55}{35} \cdot 5^{20} \cdot 3^{35} \cdot x^{20} \cdot y^{35}$ | ||
|
||
The coefficient is $ - \binom{55}{35} \cdot 5^{20} \cdot 3^{35} $ |
14 changes: 8 additions & 6 deletions
14
src/content/questions/comp2804/2022-winter-final/6/solution.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,13 +1,15 @@ | ||
$ (2x - 3y)^{30} $ | ||
|
||
$ = \sum\_{k=10}^{30} \binom{30}{k} \cdot (2x)^{k} \cdot (-3y)^{30-k} $ | ||
$ = \sum_{k=0}^{30} \binom{30}{k} \cdot (2x)^{n-k} \cdot (-3y)^{k} $ | ||
|
||
$ = \binom{30}{10} \cdot (2x)^{10} \cdot (-3y)^{30-10} $ | ||
We only consider $k=20$, as it results in $y^{20}$. | ||
|
||
$ = \binom{30}{10} \cdot (2x)^{10} \cdot (-3y)^{20} $ | ||
$ = \binom{30}{20} \cdot (2x)^{30-20} \cdot (-3y)^{20} $ | ||
|
||
$ = \binom{30}{10} \cdot 2^{10} \cdot (-3)^{20} \cdot x^{10} \cdot y^{20} $ | ||
$ = \binom{30}{20} \cdot (2x)^{10} \cdot (-3y)^{20} $ | ||
|
||
$ = \binom{30}{10} \cdot 2^{10} \cdot (3)^{20} \cdot x^{10} \cdot y^{20} $ | ||
$ = \binom{30}{20} \cdot 2^{10} \cdot (-3)^{20} \cdot x^{10} \cdot y^{20} $ | ||
|
||
From this equation, we can see that the coefficient (aka the real numbers) are: $\binom{30}{10} \cdot 2^{10} \cdot (3)^{20}$ | ||
$ = \binom{30}{20} \cdot 2^{10} \cdot (3)^{20} \cdot x^{10} \cdot y^{20} $ | ||
|
||
From this equation, we can see that the coefficient (aka the real numbers) are: $\binom{30}{20} \cdot 2^{10} \cdot 3^{20}$ |