The development of attention mechanisms
今天笔者发神经想记录一下视觉注意力机制的发展历程
-------------------attention主要的发展路径及目前的主流方法----------------
自从Attention 机制继在 NLP 领域不错的效果之后,Attention 机制也在 CV 领域迅速拉开了大幕。以 Kaiming He 组的 Nonlocal为起点,迅速开启了Attention 时代。此后层出不穷的文章,犹如雨后春笋般开遍了整个CV领域。
下面以时间线为轴记录视觉注意力机制的发展论文以及代码:
论文下载:paper-Attention to Scale-Scale-aware Semantic Image Segmentation
论文解读:Attention to Scale-Scale-aware Semantic Image Segmentation
代码下载:————————————————————————————
论文下载:Attention Is All You Need
论文下载:Semi-Supervised Classification with Graph Convolutional Networks
论文下载:Graph Attention Networks
论文代码:Graph Attention Networks
论文下载:paper-Graph-Based Global Reasoning Networks
论文解读:Graph-Based Global Reasoning Networks
论文下载:Compact Generalized Non-local Network
论文下载:paper-Context Encoding for Semantic Segmentation
论文解读:EncNet-Context Encoding for Semantic Segmentation
代码下载:pytorch-Context Encoding for Semantic Segmentation
论文下载:paper-Learning a Discriminative Feature Network for Semantic Segmentation
论文解读:DFN-Learning a Discriminative Feature Network for Semantic Segmentation
代码下载:keras--Learning a Discriminative Feature Network for Semantic Segmentation
论文下载:paper-Point-wise Spatial Attention Network for Scene Parsing
论文解读:PSANet-Point-wise Spatial Attention Network for Scene Parsing
代码下载:pytorch-Point-wise Spatial Attention Network for Scene Parsing
论文下载:paper-Squeeze-and-Excitation Networks
论文解读:SENet-Squeeze-and-Excitation Networks
代码下载:pytorch-Squeeze-and-Excitation Networks
论文下载:paper-A^2-Nets- Double Attention Networks
论文解读:A^2-Nets- Double Attention Networks
代码下载:pytorch-A^2-Nets- Double Attention Networks
论文下载:paper-Bottleneck Attention Module
论文解读:BAM: Bottleneck Attention Module
代码下载:pytorch-Bottleneck Attention Module
论文下载:paper-Convolutional Block Attention Module
论文解读:CBAM-Convolutional Block Attention Module
代码下载:pytorch-Convolutional Block Attention Module
论文下载:paper-Non-local Neural Networks
论文解读:Non-local Neural Networks
代码下载:keras-Non-local Neural Networks
---------------pytorch-Non-local Neural Networks
论文下载:paper-Dual Attention Network for Scene Segmentation
论文解读:DANet-Dual Attention Network for Scene Segmentation
代码下载:pytorch-Dual Attention Network for Scene Segmentation
论文下载:paper-Object Context Network for Scene Parsing
代码解读:OCNet: Object Context Network for Scene Parsing
代码下载:pytorch- Object Context Network for Scene Parsing
ACNet- Attention Based Network to Exploit Complementary Features for RGBD Semantic Segmentation(ICIP)
论文下载:paper- Attention Based Network to Exploit Complementary Features for RGBD Semantic Segmentation
论文解读:ACNet-Attention Based Network to Exploit Complementary Features for RGBD Semantic Segmentation
代码下载:pytorch-Attention Based Network to Exploit Complementary Features for RGBD Semantic Segmentation
论文下载:paper-Expectation-Maximization Attention Networks for Semantic Segmentation
论文解读:EMANet-Expectation-Maximization Attention Networks for Semantic Segmentation
代码下载:EMANet-Expectation-Maximization Attention Networks for Semantic Segmentation
论文下载:paper-Adaptive Pyramid Context Network for Semantic Segmentation
论文解读:APCNet-Adaptive Pyramid Context Network for Semantic Segmentation
代码下载:———————————————————————————————
论文下载:LatentGNN: Learning Efficient Non-local Relations for Visual Recognition
论文下载:An Empirical Study of Spatial Attention Mechanisms in Deep Networks
论文下载:Feature Denoising for Improving Adversarial Robustness
论文解读: Feature Denoising for Improving Adversarial Robustness
代码下载: Feature Denoising for Improving Adversarial Robustness
论文下载:Interlaced Sparse Self-Attention for Semantic Segmentation
论文下载:Interleaved Group Convolutions for Deep Neural Networks
论文下载:Dynamic Graph Message Passing Networks
论文下载:A General Framework for Bilateral and Mean Shift Filtering
论文下载: CARAFE: Content-Aware ReAssembly of FEatures
论文下载:Expectation Maximization Attention Networks for Semantic Segmentation
论文下载:paper-Squeeze-and-Attention Networks for Semantic Segmentation
代码解读:SANet-Squeeze-and-Attention Networks for Semantic Segmentation
代码下载:———————————————————————————————