Skip to content

CleverInsight/predicteasy

PredictEasy Python SDK

PredictEasy for Developers empowers developers to integrate machine learning (ML) functionalities within their applications with Predicteasy's cloud-based platform. This comprehensive suite of tools simplifies the process of analytics, building and deploying ML models, enabling developers to focus on core application logic without getting bogged down in complex ML infrastructure management.

Installation

To install the PredictEasy Python SDK, you can use pip:

pip install predicteasy

Usage

Here's a detailed tutorial on how to use each public method in the PredictEasyClient class:

  1. listDatasources()

    This method retrieves a list of all datasources available in PredictEasy.

    from predicteasy import PredictEasyClient
    
    # Initialize the client
    client = PredictEasyClient(auth_key="your_auth_key", auth_secret="your_auth_secret")
    
    # List all datasources
    all_datasources = client.datasource.listDatasource()
    print(all_datasources)
  2. getDatasource(datasource_id)

    This method fetches a specific datasource by its ID.

    # Fetch a specific datasource by ID
    datasource_id = "your_datasource_id"
    details = client.datasource.getDatasource(datasource_id)
    
    # Access specific details
    print(details.describe())
    print(details.sample())
  3. createDatasource(title, description, horizontal, vertical, file_path)

    This method creates a new datasource.

    # Define datasource parameters
    title = "Sample Title"
    description = "Sample Description"
    horizontal = ['CRM']
    vertical = "Telecom"
    file_path = "path/to/your/dataset.csv"
    
    # Create a new datasource
    new_datasource = client.datasource.createDatasource(title, description, horizontal, vertical, file_path)
    print(new_datasource)
  4. deleteDatasource(datasource_id)

    This method deletes a datasource by its ID.

    # Delete a datasource by ID
    datasource_id = "datasource_to_delete_id"
    response = client.datasource.deleteDatasource(datasource_id)
    print(response)
  5. regression.regression(datasource_id, title, test_size, cross_val, x, y)

    This method performs regression analysis.

    # Perform regression analysis
    regression_result = client.regression.regression("datasource_id", "Sales", 0.2, 2, ["feature1", "feature2"], "target")
    regression_result
  6. classification.classify(datasource_id, title, test_size, cross_val, x, y)

    This method performs classification.

    # Perform classification
    classification_result = client.classification.classify("datasource_id", "Ad Click", 0.2, 2, ["feature1", "feature2"], "target")
    classification_result
  7. clustering.cluster(datasource_id, title, exclude, n_clusters)

    This method performs clustering.

    # Perform clustering
    clustering_result = client.clustering.cluster("datasource_id", "Title", ["feature_to_exclude"], 3)
    clustering_result

Replace "your_auth_key" and "your_auth_secret" with your actual credentials from your PredictEasy Developer Profile and "your_datasource_id" with your Datasource IDs.