Skip to content

Commit

Permalink
Add analysis tool for nsight reports
Browse files Browse the repository at this point in the history
Try fixes

Try multiline

Add analysis to more jobs
  • Loading branch information
charleskawczynski committed Jan 9, 2025
1 parent 3c6181a commit 55dbb6f
Show file tree
Hide file tree
Showing 3 changed files with 280 additions and 0 deletions.
6 changes: 6 additions & 0 deletions .buildkite/analysis/Project.toml
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
[deps]
ArgParse = "c7e460c6-2fb9-53a9-8c5b-16f535851c63"
CSV = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b"
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
UnicodePlots = "b8865327-cd53-5732-bb35-84acbb429228"
VegaLite = "112f6efa-9a02-5b7d-90c0-432ed331239a"
53 changes: 53 additions & 0 deletions .buildkite/gpu_pipeline/pipeline.yml
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,11 @@ steps:
- julia --project=perf -e 'using CUDA; CUDA.precompile_runtime()'
- julia --project=perf -e 'using Pkg; Pkg.status()'

- echo "--- Instantiate analysis"
- julia --project=.buildkite/analysis -e 'using Pkg; Pkg.instantiate(;verbose=true)'
- julia --project=.buildkite/analysis -e 'using Pkg; Pkg.precompile()'
- julia --project=.buildkite/analysis -e 'using Pkg; Pkg.status()'

- echo "--- Download artifacts"
- julia --project=examples artifacts/download_artifacts.jl

Expand All @@ -55,6 +60,9 @@ steps:
julia --threads=3 --color=yes --project=examples examples/hybrid/driver.jl
--config_file ${GPU_CONFIG_PATH}target_gpu_implicit_baroclinic_wave.yml
--job_id target_gpu_implicit_baroclinic_wave
- nsys stats --report cuda_gpu_trace target_gpu_implicit_baroclinic_wave/output_active/report.nsys-rep --output target_gpu_implicit_baroclinic_wave/output_active/ --format csv
- julia --project=.buildkite/analysis .buildkite/nsight_analysis.jl --out_dir target_gpu_implicit_baroclinic_wave/output_active/
artifact_paths: "target_gpu_implicit_baroclinic_wave/output_active/*"
env:
CLIMACOMMS_DEVICE: "CUDA"
Expand All @@ -72,6 +80,9 @@ steps:
julia --threads=3 --color=yes --project=examples examples/hybrid/driver.jl
--config_file ${GPU_CONFIG_PATH}gpu_hs_rhoe_equil_0M.yml
--job_id gpu_hs_rhoe_equil_55km_nz63_0M
- nsys stats --report cuda_gpu_trace gpu_hs_rhoe_equil_55km_nz63_0M/output_active/report.nsys-rep --output gpu_hs_rhoe_equil_55km_nz63_0M/output_active/ --format csv
- julia --project=.buildkite/analysis .buildkite/nsight_analysis.jl --out_dir gpu_hs_rhoe_equil_55km_nz63_0M/output_active/
artifact_paths: "gpu_hs_rhoe_equil_55km_nz63_0M/output_active/*"
env:
CLIMACOMMS_DEVICE: "CUDA"
Expand All @@ -90,6 +101,10 @@ steps:
julia --threads=3 --color=yes --project=examples examples/hybrid/driver.jl
--config_file ${GPU_CONFIG_PATH}gpu_hs_rhoe_equil_0M.yml
--job_id gpu_hs_rhoe_equil_55km_nz63_0M_4process
# TODO: add analysis for all gpu devices
- nsys stats --report cuda_gpu_trace gpu_hs_rhoe_equil_55km_nz63_0M_4process/output_active/report-0.nsys-rep --output gpu_hs_rhoe_equil_55km_nz63_0M_4process/output_active/ --format csv
- julia --project=.buildkite/analysis .buildkite/nsight_analysis.jl --out_dir gpu_hs_rhoe_equil_55km_nz63_0M_4process/output_active/
artifact_paths: "gpu_hs_rhoe_equil_55km_nz63_0M_4process/output_active/*"
env:
CLIMACOMMS_DEVICE: "CUDA"
Expand All @@ -110,6 +125,10 @@ steps:
julia --threads=3 --color=yes --project=examples examples/hybrid/driver.jl
--config_file ${GPU_CONFIG_PATH}target_gpu_implicit_baroclinic_wave.yml
--job_id target_gpu_implicit_baroclinic_wave_4process
# TODO: add analysis for all gpu devices
- nsys stats --report cuda_gpu_trace target_gpu_implicit_baroclinic_wave_4process/output_active/report-0.nsys-rep --output target_gpu_implicit_baroclinic_wave_4process/output_active/ --format csv
- julia --project=.buildkite/analysis .buildkite/nsight_analysis.jl --out_dir target_gpu_implicit_baroclinic_wave_4process/output_active/
artifact_paths: "target_gpu_implicit_baroclinic_wave_4process/output_active/*"
env:
CLIMACOMMS_DEVICE: "CUDA"
Expand All @@ -131,6 +150,9 @@ steps:
nsys profile --delay 100 --trace=nvtx,mpi,cuda,osrt --output=gpu_aquaplanet_dyamond_diag_1process/output_active/report julia --threads=3 --color=yes --project=examples examples/hybrid/driver.jl
--config_file ${GPU_CONFIG_PATH}gpu_aquaplanet_dyamond_diag_1process.yml
--job_id gpu_aquaplanet_dyamond_diag_1process
- nsys stats --report cuda_gpu_trace gpu_aquaplanet_dyamond_diag_1process/output_active/report.nsys-rep --output gpu_aquaplanet_dyamond_diag_1process/output_active/ --format csv
- julia --project=.buildkite/analysis .buildkite/nsight_analysis.jl --out_dir gpu_aquaplanet_dyamond_diag_1process/output_active/
artifact_paths: "gpu_aquaplanet_dyamond_diag_1process/output_active/*"
env:
CLIMACOMMS_DEVICE: "CUDA"
Expand All @@ -152,6 +174,9 @@ steps:
julia --threads=3 --color=yes --project=examples examples/hybrid/driver.jl
--config_file ${GPU_CONFIG_PATH}gpu_aquaplanet_dyamond_ss.yml
--job_id gpu_aquaplanet_dyamond_ss_1process
- nsys stats --report cuda_gpu_trace gpu_aquaplanet_dyamond_ss_1process/output_active/report.nsys-rep --output gpu_aquaplanet_dyamond_ss_1process/output_active/ --format csv
- julia --project=.buildkite/analysis .buildkite/nsight_analysis.jl --out_dir gpu_aquaplanet_dyamond_ss_1process/output_active/
artifact_paths: "gpu_aquaplanet_dyamond_ss_1process/output_active/*"
env:
CLIMACOMMS_DEVICE: "CUDA"
Expand All @@ -169,9 +194,14 @@ steps:
- mkdir -p gpu_aquaplanet_dyamond_ss_2process
- >
srun --cpu-bind=threads --cpus-per-task=4
nsys profile --delay 100 --trace=nvtx,mpi,cuda,osrt --output=gpu_aquaplanet_dyamond_ss_2process/output_active/report
julia --threads=3 --color=yes --project=examples examples/hybrid/driver.jl
--config_file ${GPU_CONFIG_PATH}gpu_aquaplanet_dyamond_ss.yml
--job_id gpu_aquaplanet_dyamond_ss_2process
# TODO: add analysis for all gpu devices
- nsys stats --report cuda_gpu_trace gpu_aquaplanet_dyamond_ss_2process/output_active/report-0.nsys-rep --output gpu_aquaplanet_dyamond_ss_2process/output_active/ --format csv
- julia --project=.buildkite/analysis .buildkite/nsight_analysis.jl --out_dir gpu_aquaplanet_dyamond_ss_2process/output_active/
artifact_paths: "gpu_aquaplanet_dyamond_ss_2process/output_active/*"
env:
CLIMACOMMS_DEVICE: "CUDA"
Expand All @@ -189,9 +219,14 @@ steps:
- mkdir -p gpu_aquaplanet_dyamond_ss_4process
- >
srun --cpu-bind=threads --cpus-per-task=4
nsys profile --delay 100 --trace=nvtx,mpi,cuda,osrt --output=gpu_aquaplanet_dyamond_ss_4process/output_active/report
julia --threads=3 --color=yes --project=examples examples/hybrid/driver.jl
--config_file ${GPU_CONFIG_PATH}gpu_aquaplanet_dyamond_ss.yml
--job_id gpu_aquaplanet_dyamond_ss_4process
# TODO: add analysis for all gpu devices
- nsys stats --report cuda_gpu_trace gpu_aquaplanet_dyamond_ss_4process/output_active/report-0.nsys-rep --output gpu_aquaplanet_dyamond_ss_4process/output_active/ --format csv
- julia --project=.buildkite/analysis .buildkite/nsight_analysis.jl --out_dir gpu_aquaplanet_dyamond_ss_4process/output_active/
artifact_paths: "gpu_aquaplanet_dyamond_ss_4process/output_active/*"
env:
CLIMACOMMS_DEVICE: "CUDA"
Expand Down Expand Up @@ -227,9 +262,13 @@ steps:
- mkdir -p gpu_aquaplanet_dyamond_ws_1process
- >
srun --cpu-bind=threads --cpus-per-task=4
nsys profile --delay 100 --trace=nvtx,mpi,cuda,osrt --output=gpu_aquaplanet_dyamond_ws_1process/output_active/report
julia --threads=3 --color=yes --project=examples examples/hybrid/driver.jl
--config_file ${GPU_CONFIG_PATH}gpu_aquaplanet_dyamond_ws_1process.yml
--job_id gpu_aquaplanet_dyamond_ws_1process
- nsys stats --report cuda_gpu_trace gpu_aquaplanet_dyamond_ws_1process/output_active/report.nsys-rep --output gpu_aquaplanet_dyamond_ws_1process/output_active/ --format csv
- julia --project=.buildkite/analysis .buildkite/nsight_analysis.jl --out_dir gpu_aquaplanet_dyamond_ws_1process/output_active/
artifact_paths: "gpu_aquaplanet_dyamond_ws_1process/output_active/*"
env:
CLIMACOMMS_DEVICE: "CUDA"
Expand All @@ -247,9 +286,13 @@ steps:
- mkdir -p gpu_aquaplanet_dyamond_ws_2process
- >
srun --cpu-bind=threads --cpus-per-task=4
nsys profile --delay 100 --trace=nvtx,mpi,cuda,osrt --output=gpu_aquaplanet_dyamond_ws_2process/output_active/report
julia --threads=3 --color=yes --project=examples examples/hybrid/driver.jl
--config_file ${GPU_CONFIG_PATH}gpu_aquaplanet_dyamond_ws_2process.yml
--job_id gpu_aquaplanet_dyamond_ws_2process
- nsys stats --report cuda_gpu_trace gpu_aquaplanet_dyamond_ws_2process/output_active/report-0.nsys-rep --output gpu_aquaplanet_dyamond_ws_2process/output_active/ --format csv
- julia --project=.buildkite/analysis .buildkite/nsight_analysis.jl --out_dir gpu_aquaplanet_dyamond_ws_2process/output_active/
artifact_paths: "gpu_aquaplanet_dyamond_ws_2process/output_active/*"
env:
CLIMACOMMS_DEVICE: "CUDA"
Expand All @@ -267,9 +310,13 @@ steps:
- mkdir -p gpu_aquaplanet_dyamond_ws_4process
- >
srun --cpu-bind=threads --cpus-per-task=4
nsys profile --delay 100 --trace=nvtx,mpi,cuda,osrt --output=gpu_aquaplanet_dyamond_ws_4process/output_active/report
julia --threads=3 --color=yes --project=examples examples/hybrid/driver.jl
--config_file ${GPU_CONFIG_PATH}gpu_aquaplanet_dyamond_ws_4process.yml
--job_id gpu_aquaplanet_dyamond_ws_4process
- nsys stats --report cuda_gpu_trace gpu_aquaplanet_dyamond_ws_4process/output_active/report-0.nsys-rep --output gpu_aquaplanet_dyamond_ws_4process/output_active/ --format csv
- julia --project=.buildkite/analysis .buildkite/nsight_analysis.jl --out_dir gpu_aquaplanet_dyamond_ws_4process/output_active/
artifact_paths: "gpu_aquaplanet_dyamond_ws_4process/output_active/*"
env:
CLIMACOMMS_DEVICE: "CUDA"
Expand Down Expand Up @@ -311,6 +358,9 @@ steps:
julia --threads=3 --color=yes --project=examples examples/hybrid/driver.jl
--config_file ${MODEL_CONFIG_PATH}aquaplanet_diagedmf.yml
--job_id gpu_aquaplanet_diagedmf
- nsys stats --report cuda_gpu_trace gpu_aquaplanet_diagedmf/output_active/report.nsys-rep --output gpu_aquaplanet_diagedmf/output_active/ --format csv
- julia --project=.buildkite/analysis .buildkite/nsight_analysis.jl --out_dir gpu_aquaplanet_diagedmf/output_active/
artifact_paths: "gpu_aquaplanet_diagedmf/output_active/*"
env:
CLIMACOMMS_DEVICE: "CUDA"
Expand Down Expand Up @@ -345,6 +395,9 @@ steps:
julia --threads=3 --color=yes --project=examples examples/hybrid/driver.jl
--config_file ${MODEL_CONFIG_PATH}aquaplanet_progedmf.yml
--job_id gpu_aquaplanet_progedmf
- nsys stats --report cuda_gpu_trace gpu_aquaplanet_progedmf/output_active/report.nsys-rep --output gpu_aquaplanet_progedmf/output_active/ --format csv
- julia --project=.buildkite/analysis .buildkite/nsight_analysis.jl --out_dir gpu_aquaplanet_progedmf/output_active/
artifact_paths: "gpu_aquaplanet_progedmf/output_active/*"
env:
CLIMACOMMS_DEVICE: "CUDA"
Expand Down
221 changes: 221 additions & 0 deletions .buildkite/nsight_analysis.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,221 @@
# nsys stats --report cuda_gpu_trace report.nsys-rep --output . --format csv

@info "Starting nsight analysis"

using VegaLite, UnicodePlots, CSV, DataFrames, ArgParse

function parse_commandline()
s = ArgParse.ArgParseSettings()
ArgParse.@add_arg_table! s begin
"--out_dir"
help = "Output data directory"
arg_type = String
end
return ArgParse.parse_args(ARGS, s)
end

function get_params()
parsed_args = parse_commandline()
return parsed_args["out_dir"]
end

output_dir = get_params()

@time "Load CSV file" begin
if !@isdefined(data_and_init)
data_and_init = cd(output_dir) do
CSV.read("_cuda_gpu_trace.csv", DataFrame)
end
end
end

"""
filter_out_initialization(data;
keep_n_minimum_kernels = 1000,
gap_percent_threshold = 10
)
We do not want to include initialization kernels in our analysis,
since they are not representative of our runtime performance. Therefore,
We iterate using a heuristic to filter out initialization:
- from the start to halfway, find the largest gap between kernel calls, and filter
out from the start to that point.
- If the next gap is within some percentage (`gap_percent_threshold`), terminate
- If trimming results in fewer than `keep_n_minimum_kernels`, terminate
"""
function filter_out_initialization(
data;
keep_n_minimum_kernels = 1000,
gap_percent_threshold = 10,
)
t_start = data[1, "Start (ns)"]
t_end = data[end, "Start (ns)"]

# filter until maximum kernel duration is in the
# distribution of the remaining kernels:
halfway(x) = Int(round(length(x[!, "Name"]) / 2))
continue_trimming = true
max_gaps = Int[]
function maximum_gap(data)
R = 1:halfway(data)
(max_gap, i_max) = findmax(identity, diff(data[R, "Start (ns)"]))
i_next_start = i_max + 1
return (max_gap, i_next_start)
end
i_iter = 0
(next_max_gap, i_next_start) = maximum_gap(data)
exit_reason = 0
while continue_trimming
@info "Trimming initialization data. Iteration $i_iter"
push!(max_gaps, next_max_gap)
# i_longest_remaining_kernel = findfirst(x -> x == max_gaps[end], data[1:halfway(data), "Duration (ns)"])
new_data = data[i_next_start:end, :]
if length(new_data[!, "Name"]) < keep_n_minimum_kernels
exit_reason = "trimming more kernels results in fewer than $keep_n_minimum_kernels kernels left"
@warn "New data length would have been too short: $(length(new_data[!, "Name"]))"
continue_trimming = false
else
data = new_data
# If the kernel we're filtering out now is within some
# percentage (gap_percent_threshold) of the largest
# one that remains, then stop filtering
(next_max_gap, i_next_start) = maximum_gap(data)
if (max_gaps[end] - next_max_gap) / max_gaps[end] * 100
gap_percent_threshold
continue_trimming = false
exit_reason = "next gap between kernels is similar to previously filtered one"
end
end
i_iter += 1
i_iter > 10^6 && error("Too many iterations")
end

# Now, let's trim the end by 10%
N = length(data[!, "Name"])
N_end = Int(round(N * 0.9))
data = data[1:N_end, :]
t_start_new = data[1, "Start (ns)"]
@info "Original start time (s) : $(t_start / 10^9)"
@info "New start time (s) : $(t_start_new / 10^9)"
@info "Fraction of simulation trimmed: $((t_start_new-t_start)/(t_end-t_start))"
@info "exit_reason : $(exit_reason)"

return data
end

@time "Filter CSV" begin
data = filter_out_initialization(data_and_init)
end

const logged_uncaught_cases = String[]

function group_name(s)
transform_name = Dict()
transform_name["knl_copyto_"] = "copyto"
transform_name["copyto_stencil_kernel"] = "stencil"
transform_name["CUDA memcpy"] = "CUDA memcpy"
transform_name["knl_fill_"] = "fill"
transform_name["CUDA memset"] = "CUDA memset"
transform_name["CuKernelContext"] = "CuKernelContext"
transform_name["knl_fused_copyto"] = "fused_copyto"
transform_name["knl_fused_copyto_linear"] = "fused_copyto_linear"
transform_name["multiple_field_solve_kernel_"] = "multiple_field_solve"
transform_name["single_field_solve_kernel"] = "single_field_solve_kernel"
transform_name["copyto_spectral_kernel_"] = "spectral"
transform_name["bycolumn_kernel"] = "bycolumn_reduce"
transform_name["dss_load_perimeter_data_kernel"] = "dss_load"
transform_name["dss_unload_perimeter_data_kernel"] = "dss_unload"
transform_name["dss_local_kernel"] = "dss_local"
transform_name["dss_transform_kernel"] = "dss_transform"
transform_name["dss_untransform_kernel"] = "dss_untransform"
transform_name["dss_local_ghost_kernel"] = "dss_local_ghost"
transform_name["fill_send_buffer_kernel"] = "dss_fill_send_buffer"
transform_name["load_from_recv_buffer_kernel"] = "dss_load_from_recv"
transform_name["dss_ghost_kernel"] = "dss_ghost"
transform_name["rte_sw_2stream_solve"] = "RRTMGP_RTE_sw"
transform_name["rte_lw_2stream_solve"] = "RRTMGP_RTE_lw"
transform_name["compute_col_gas_CUDA"] = "RRTMGP_col_gas"
transform_name["set_interpolated_values_kernel"] = "remapping"
if s in values(transform_name)
return s # already grouped
else
for k in keys(transform_name)
occursin(k, s) && return transform_name[k]
end
end
if !(s in logged_uncaught_cases)
@warn "Uncaught case for $s"
push!(logged_uncaught_cases, s)
end
return "Unknown"
end

function vega_pie_chart(data)
data[:, "Name"] .= group_name.(data[:, "Name"])
sort!(data, order("Duration (ns)", by = identity))

data_duration = DataFrame(
duration = data[!, "Duration (ns)"] / 10^3,
name = data[!, "Name"],
)
data_duration |>
@vlplot(
:arc,
theta = :duration,
color = "name:n",
view = {stroke = nothing}
) |>
save("pie_chart.png")
end

function sorted_barplot(x₀, y₀; title)
x = deepcopy(x₀)
y = deepcopy(y₀)
perm = sortperm(y)
permute!(x, perm)
permute!(y, perm)
bp = UnicodePlots.barplot(x, y; title)
println(bp)
end


function unicode_barchart(data)
data[:, "Name"] .= group_name.(data[:, "Name"])
names₀ = collect(Set(data[!, "Name"]))
duration_sum = sum(data[!, "Duration (ns)"])
bar_data = Float64[]
average_kernel_cost = Float64[]
n_kernels = Int[]
for name in names₀
df_name = filter(row -> group_name(row.Name) == name, data; view = true)
nk = length(df_name[!, "Duration (ns)"])
s = sum(df_name[!, "Duration (ns)"])
push!(bar_data, s / duration_sum * 100)
push!(average_kernel_cost, s / nk / 10^3)
push!(n_kernels, nk)
end
N = length(data[:, "Name"])
@info "Statistics across $N total kernels"

sorted_barplot(names₀, bar_data; title = "Kernel duration percentage")
sorted_barplot(names₀, n_kernels; title = "Number of kernels")
sorted_barplot(
names₀,
average_kernel_cost;
title = "Average kernel duration (μs)",
)

for name in names₀
df_name = filter(row -> group_name(row.Name) == name, data; view = true)
duration_ms = df_name[!, "Duration (ns)"] ./ 10^9 .* 10^3
h = UnicodePlots.histogram(
duration_ms;
title = "$name duration distribution (ms)",
)
println(h)
end
end

@time "Make unicode bar chart" unicode_barchart(data)
# @time "Make vega pie chart" vega_pie_chart(data)

0 comments on commit 55dbb6f

Please sign in to comment.