-
Notifications
You must be signed in to change notification settings - Fork 19
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add analysis tool for nsight reports
Try fixes Try multiline Add analysis to more jobs
- Loading branch information
1 parent
3c6181a
commit 55dbb6f
Showing
3 changed files
with
280 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
[deps] | ||
ArgParse = "c7e460c6-2fb9-53a9-8c5b-16f535851c63" | ||
CSV = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b" | ||
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0" | ||
UnicodePlots = "b8865327-cd53-5732-bb35-84acbb429228" | ||
VegaLite = "112f6efa-9a02-5b7d-90c0-432ed331239a" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,221 @@ | ||
# nsys stats --report cuda_gpu_trace report.nsys-rep --output . --format csv | ||
|
||
@info "Starting nsight analysis" | ||
|
||
using VegaLite, UnicodePlots, CSV, DataFrames, ArgParse | ||
|
||
function parse_commandline() | ||
s = ArgParse.ArgParseSettings() | ||
ArgParse.@add_arg_table! s begin | ||
"--out_dir" | ||
help = "Output data directory" | ||
arg_type = String | ||
end | ||
return ArgParse.parse_args(ARGS, s) | ||
end | ||
|
||
function get_params() | ||
parsed_args = parse_commandline() | ||
return parsed_args["out_dir"] | ||
end | ||
|
||
output_dir = get_params() | ||
|
||
@time "Load CSV file" begin | ||
if !@isdefined(data_and_init) | ||
data_and_init = cd(output_dir) do | ||
CSV.read("_cuda_gpu_trace.csv", DataFrame) | ||
end | ||
end | ||
end | ||
|
||
""" | ||
filter_out_initialization(data; | ||
keep_n_minimum_kernels = 1000, | ||
gap_percent_threshold = 10 | ||
) | ||
We do not want to include initialization kernels in our analysis, | ||
since they are not representative of our runtime performance. Therefore, | ||
We iterate using a heuristic to filter out initialization: | ||
- from the start to halfway, find the largest gap between kernel calls, and filter | ||
out from the start to that point. | ||
- If the next gap is within some percentage (`gap_percent_threshold`), terminate | ||
- If trimming results in fewer than `keep_n_minimum_kernels`, terminate | ||
""" | ||
function filter_out_initialization( | ||
data; | ||
keep_n_minimum_kernels = 1000, | ||
gap_percent_threshold = 10, | ||
) | ||
t_start = data[1, "Start (ns)"] | ||
t_end = data[end, "Start (ns)"] | ||
|
||
# filter until maximum kernel duration is in the | ||
# distribution of the remaining kernels: | ||
halfway(x) = Int(round(length(x[!, "Name"]) / 2)) | ||
continue_trimming = true | ||
max_gaps = Int[] | ||
function maximum_gap(data) | ||
R = 1:halfway(data) | ||
(max_gap, i_max) = findmax(identity, diff(data[R, "Start (ns)"])) | ||
i_next_start = i_max + 1 | ||
return (max_gap, i_next_start) | ||
end | ||
i_iter = 0 | ||
(next_max_gap, i_next_start) = maximum_gap(data) | ||
exit_reason = 0 | ||
while continue_trimming | ||
@info "Trimming initialization data. Iteration $i_iter" | ||
push!(max_gaps, next_max_gap) | ||
# i_longest_remaining_kernel = findfirst(x -> x == max_gaps[end], data[1:halfway(data), "Duration (ns)"]) | ||
new_data = data[i_next_start:end, :] | ||
if length(new_data[!, "Name"]) < keep_n_minimum_kernels | ||
exit_reason = "trimming more kernels results in fewer than $keep_n_minimum_kernels kernels left" | ||
@warn "New data length would have been too short: $(length(new_data[!, "Name"]))" | ||
continue_trimming = false | ||
else | ||
data = new_data | ||
# If the kernel we're filtering out now is within some | ||
# percentage (gap_percent_threshold) of the largest | ||
# one that remains, then stop filtering | ||
(next_max_gap, i_next_start) = maximum_gap(data) | ||
if (max_gaps[end] - next_max_gap) / max_gaps[end] * 100 ≤ | ||
gap_percent_threshold | ||
continue_trimming = false | ||
exit_reason = "next gap between kernels is similar to previously filtered one" | ||
end | ||
end | ||
i_iter += 1 | ||
i_iter > 10^6 && error("Too many iterations") | ||
end | ||
|
||
# Now, let's trim the end by 10% | ||
N = length(data[!, "Name"]) | ||
N_end = Int(round(N * 0.9)) | ||
data = data[1:N_end, :] | ||
t_start_new = data[1, "Start (ns)"] | ||
@info "Original start time (s) : $(t_start / 10^9)" | ||
@info "New start time (s) : $(t_start_new / 10^9)" | ||
@info "Fraction of simulation trimmed: $((t_start_new-t_start)/(t_end-t_start))" | ||
@info "exit_reason : $(exit_reason)" | ||
|
||
return data | ||
end | ||
|
||
@time "Filter CSV" begin | ||
data = filter_out_initialization(data_and_init) | ||
end | ||
|
||
const logged_uncaught_cases = String[] | ||
|
||
function group_name(s) | ||
transform_name = Dict() | ||
transform_name["knl_copyto_"] = "copyto" | ||
transform_name["copyto_stencil_kernel"] = "stencil" | ||
transform_name["CUDA memcpy"] = "CUDA memcpy" | ||
transform_name["knl_fill_"] = "fill" | ||
transform_name["CUDA memset"] = "CUDA memset" | ||
transform_name["CuKernelContext"] = "CuKernelContext" | ||
transform_name["knl_fused_copyto"] = "fused_copyto" | ||
transform_name["knl_fused_copyto_linear"] = "fused_copyto_linear" | ||
transform_name["multiple_field_solve_kernel_"] = "multiple_field_solve" | ||
transform_name["single_field_solve_kernel"] = "single_field_solve_kernel" | ||
transform_name["copyto_spectral_kernel_"] = "spectral" | ||
transform_name["bycolumn_kernel"] = "bycolumn_reduce" | ||
transform_name["dss_load_perimeter_data_kernel"] = "dss_load" | ||
transform_name["dss_unload_perimeter_data_kernel"] = "dss_unload" | ||
transform_name["dss_local_kernel"] = "dss_local" | ||
transform_name["dss_transform_kernel"] = "dss_transform" | ||
transform_name["dss_untransform_kernel"] = "dss_untransform" | ||
transform_name["dss_local_ghost_kernel"] = "dss_local_ghost" | ||
transform_name["fill_send_buffer_kernel"] = "dss_fill_send_buffer" | ||
transform_name["load_from_recv_buffer_kernel"] = "dss_load_from_recv" | ||
transform_name["dss_ghost_kernel"] = "dss_ghost" | ||
transform_name["rte_sw_2stream_solve"] = "RRTMGP_RTE_sw" | ||
transform_name["rte_lw_2stream_solve"] = "RRTMGP_RTE_lw" | ||
transform_name["compute_col_gas_CUDA"] = "RRTMGP_col_gas" | ||
transform_name["set_interpolated_values_kernel"] = "remapping" | ||
if s in values(transform_name) | ||
return s # already grouped | ||
else | ||
for k in keys(transform_name) | ||
occursin(k, s) && return transform_name[k] | ||
end | ||
end | ||
if !(s in logged_uncaught_cases) | ||
@warn "Uncaught case for $s" | ||
push!(logged_uncaught_cases, s) | ||
end | ||
return "Unknown" | ||
end | ||
|
||
function vega_pie_chart(data) | ||
data[:, "Name"] .= group_name.(data[:, "Name"]) | ||
sort!(data, order("Duration (ns)", by = identity)) | ||
|
||
data_duration = DataFrame( | ||
duration = data[!, "Duration (ns)"] / 10^3, | ||
name = data[!, "Name"], | ||
) | ||
data_duration |> | ||
@vlplot( | ||
:arc, | ||
theta = :duration, | ||
color = "name:n", | ||
view = {stroke = nothing} | ||
) |> | ||
save("pie_chart.png") | ||
end | ||
|
||
function sorted_barplot(x₀, y₀; title) | ||
x = deepcopy(x₀) | ||
y = deepcopy(y₀) | ||
perm = sortperm(y) | ||
permute!(x, perm) | ||
permute!(y, perm) | ||
bp = UnicodePlots.barplot(x, y; title) | ||
println(bp) | ||
end | ||
|
||
|
||
function unicode_barchart(data) | ||
data[:, "Name"] .= group_name.(data[:, "Name"]) | ||
names₀ = collect(Set(data[!, "Name"])) | ||
duration_sum = sum(data[!, "Duration (ns)"]) | ||
bar_data = Float64[] | ||
average_kernel_cost = Float64[] | ||
n_kernels = Int[] | ||
for name in names₀ | ||
df_name = filter(row -> group_name(row.Name) == name, data; view = true) | ||
nk = length(df_name[!, "Duration (ns)"]) | ||
s = sum(df_name[!, "Duration (ns)"]) | ||
push!(bar_data, s / duration_sum * 100) | ||
push!(average_kernel_cost, s / nk / 10^3) | ||
push!(n_kernels, nk) | ||
end | ||
N = length(data[:, "Name"]) | ||
@info "Statistics across $N total kernels" | ||
|
||
sorted_barplot(names₀, bar_data; title = "Kernel duration percentage") | ||
sorted_barplot(names₀, n_kernels; title = "Number of kernels") | ||
sorted_barplot( | ||
names₀, | ||
average_kernel_cost; | ||
title = "Average kernel duration (μs)", | ||
) | ||
|
||
for name in names₀ | ||
df_name = filter(row -> group_name(row.Name) == name, data; view = true) | ||
duration_ms = df_name[!, "Duration (ns)"] ./ 10^9 .* 10^3 | ||
h = UnicodePlots.histogram( | ||
duration_ms; | ||
title = "$name duration distribution (ms)", | ||
) | ||
println(h) | ||
end | ||
end | ||
|
||
@time "Make unicode bar chart" unicode_barchart(data) | ||
# @time "Make vega pie chart" vega_pie_chart(data) |