Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add min area limiter #1376

Merged
merged 1 commit into from
Dec 2, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .buildkite/pipeline.yml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
env:
JULIA_VERSION: "1.9.3"
OPENMPI_VERSION: "4.0.4"
OPENMPI_VERSION: "4.1.5"
CUDA_VERSION: "11.2"
CLIMACOMMS_DEVICE: "CPU"
JULIA_CPU_TARGET: 'broadwell;skylake'
Expand Down
9 changes: 6 additions & 3 deletions driver/generate_namelist.jl
Original file line number Diff line number Diff line change
Expand Up @@ -111,8 +111,11 @@ function default_namelist(
namelist_defaults["turbulence"]["EDMF_PrognosticTKE"]["turbulent_entrainment_factor"] = 0.075
namelist_defaults["turbulence"]["EDMF_PrognosticTKE"]["entrainment_smin_tke_coeff"] = 0.3
namelist_defaults["turbulence"]["EDMF_PrognosticTKE"]["updraft_mixing_frac"] = 0.25
namelist_defaults["turbulence"]["EDMF_PrognosticTKE"]["area_limiter_scale"] = 4.0
namelist_defaults["turbulence"]["EDMF_PrognosticTKE"]["area_limiter_power"] = 10.0
namelist_defaults["turbulence"]["EDMF_PrognosticTKE"]["area_limiter_scale"] = 5.0
namelist_defaults["turbulence"]["EDMF_PrognosticTKE"]["area_limiter_power"] = 30.0
namelist_defaults["turbulence"]["EDMF_PrognosticTKE"]["limit_min_area"] = false
namelist_defaults["turbulence"]["EDMF_PrognosticTKE"]["min_area_limiter_scale"] = 3.0
namelist_defaults["turbulence"]["EDMF_PrognosticTKE"]["min_area_limiter_power"] = 2000.0
namelist_defaults["turbulence"]["EDMF_PrognosticTKE"]["entrainment_scale"] = 0.0004
namelist_defaults["turbulence"]["EDMF_PrognosticTKE"]["sorting_power"] = 2.0
namelist_defaults["turbulence"]["EDMF_PrognosticTKE"]["min_upd_velocity"] = 0.001
Expand Down Expand Up @@ -159,7 +162,7 @@ function default_namelist(
namelist_defaults["turbulence"]["EDMF_PrognosticTKE"]["entr_dim_scale"] = "buoy_vel" # {"buoy_vel", "inv_scale_height", "inv_z", "none"}
namelist_defaults["turbulence"]["EDMF_PrognosticTKE"]["detr_dim_scale"] = "buoy_vel" # {"buoy_vel", "inv_scale_height", "inv_z", "none"}
namelist_defaults["turbulence"]["EDMF_PrognosticTKE"]["entr_pi_subset"] = ntuple(i -> i, 6) # or, e.g., (1, 3, 6)
namelist_defaults["turbulence"]["EDMF_PrognosticTKE"]["pi_norm_consts"] = [478.298, 1.0, 1.0, 1.0, 1.0, 1.0] # normalization constants for Pi groups
namelist_defaults["turbulence"]["EDMF_PrognosticTKE"]["pi_norm_consts"] = [10.0, 5.0, 1.0, 1.0, 1.0, 1.0] # normalization constants for Pi groups
namelist_defaults["turbulence"]["EDMF_PrognosticTKE"]["stochastic_entrainment"] = "deterministic" # {"deterministic", "noisy_relaxation_process", "lognormal_scaling", "prognostic_noisy_relaxation_process"}

namelist_defaults["turbulence"]["EDMF_PrognosticTKE"]["pressure_closure_buoy"] = "normalmode"
Expand Down
246 changes: 123 additions & 123 deletions post_processing/mse_tables.jl
Original file line number Diff line number Diff line change
Expand Up @@ -5,76 +5,76 @@
all_best_mse = OrderedCollections.OrderedDict()
#
all_best_mse["ARM_SGP"] = OrderedCollections.OrderedDict()
all_best_mse["ARM_SGP"]["qt_mean"] = 0.2552463890767408
all_best_mse["ARM_SGP"]["updraft_area"] = 327.3520363312712
all_best_mse["ARM_SGP"]["updraft_w"] = 154.36957785345137
all_best_mse["ARM_SGP"]["updraft_qt"] = 30.61454320120155
all_best_mse["ARM_SGP"]["updraft_thetal"] = 172.0123422125184
all_best_mse["ARM_SGP"]["qt_mean"] = 0.29076673178995216
all_best_mse["ARM_SGP"]["updraft_area"] = 330.984813969893
all_best_mse["ARM_SGP"]["updraft_w"] = 147.24652157952917
all_best_mse["ARM_SGP"]["updraft_qt"] = 29.164231737860703
all_best_mse["ARM_SGP"]["updraft_thetal"] = 172.00836919579936
all_best_mse["ARM_SGP"]["u_mean"] = 1.3235797273549681e-5
all_best_mse["ARM_SGP"]["tke_mean"] = 1104.669205982547
all_best_mse["ARM_SGP"]["temperature_mean"] = 0.00012756357403675883
all_best_mse["ARM_SGP"]["ql_mean"] = 212.1064083740767
all_best_mse["ARM_SGP"]["tke_mean"] = 1071.1115837851398
all_best_mse["ARM_SGP"]["temperature_mean"] = 0.000145284205847849
all_best_mse["ARM_SGP"]["ql_mean"] = 191.43313382586433
all_best_mse["ARM_SGP"]["qi_mean"] = "NA"
all_best_mse["ARM_SGP"]["thetal_mean"] = 0.00011934280706982167
all_best_mse["ARM_SGP"]["Hvar_mean"] = 1639.1273022543226
all_best_mse["ARM_SGP"]["QTvar_mean"] = 894.4270510115464
all_best_mse["ARM_SGP"]["thetal_mean"] = 0.00013400187653103297
all_best_mse["ARM_SGP"]["Hvar_mean"] = 464.6765528832271
all_best_mse["ARM_SGP"]["QTvar_mean"] = 187.56407976591296
#
all_best_mse["Bomex"] = OrderedCollections.OrderedDict()
all_best_mse["Bomex"]["qt_mean"] = 0.09739390729999153
all_best_mse["Bomex"]["updraft_area"] = 127.52486658438369
all_best_mse["Bomex"]["updraft_w"] = 17.600460504489188
all_best_mse["Bomex"]["updraft_qt"] = 6.874952845534643
all_best_mse["Bomex"]["updraft_thetal"] = 69.79142187577207
all_best_mse["Bomex"]["v_mean"] = 64.9563162432342
all_best_mse["Bomex"]["u_mean"] = 0.26581933718389134
all_best_mse["Bomex"]["tke_mean"] = 70.51469538441916
all_best_mse["Bomex"]["temperature_mean"] = 3.926286649960636e-5
all_best_mse["Bomex"]["ql_mean"] = 8.237082183571355
all_best_mse["Bomex"]["qt_mean"] = 0.09011341001015058
all_best_mse["Bomex"]["updraft_area"] = 128.11120831307056
all_best_mse["Bomex"]["updraft_w"] = 15.071877299719867
all_best_mse["Bomex"]["updraft_qt"] = 6.880009558381172
all_best_mse["Bomex"]["updraft_thetal"] = 69.78077555044864
all_best_mse["Bomex"]["v_mean"] = 65.48877768586455
all_best_mse["Bomex"]["u_mean"] = 0.26993515144140345
all_best_mse["Bomex"]["tke_mean"] = 70.2632736760826
all_best_mse["Bomex"]["temperature_mean"] = 3.2721342748183155e-5
all_best_mse["Bomex"]["ql_mean"] = 7.5634994360906225
all_best_mse["Bomex"]["qi_mean"] = "NA"
all_best_mse["Bomex"]["thetal_mean"] = 3.986607753531752e-5
all_best_mse["Bomex"]["Hvar_mean"] = 3047.497956802109
all_best_mse["Bomex"]["QTvar_mean"] = 1117.6728870383952
all_best_mse["Bomex"]["thetal_mean"] = 3.33221329251271e-5
all_best_mse["Bomex"]["Hvar_mean"] = 5256.502176612955
all_best_mse["Bomex"]["QTvar_mean"] = 1819.1486275444367
#
all_best_mse["DryBubble"] = OrderedCollections.OrderedDict()
all_best_mse["DryBubble"]["updraft_area"] = 4.6329380448915837e-5
all_best_mse["DryBubble"]["updraft_w"] = 0.00037381367465367816
all_best_mse["DryBubble"]["updraft_thetal"] = 5.200056656308287e-13
all_best_mse["DryBubble"]["u_mean"] = 1.7011568606656658e-9
all_best_mse["DryBubble"]["tke_mean"] = 8.79488719128737e-5
all_best_mse["DryBubble"]["temperature_mean"] = 2.6855797193846195e-14
all_best_mse["DryBubble"]["thetal_mean"] = 2.042988524531394e-14
all_best_mse["DryBubble"]["Hvar_mean"] = 3.869104151246155e-6
all_best_mse["DryBubble"]["updraft_area"] = 193.75911462032647
all_best_mse["DryBubble"]["updraft_w"] = 1222.4535227571926
all_best_mse["DryBubble"]["updraft_thetal"] = 4.82595176836427e-5
all_best_mse["DryBubble"]["u_mean"] = 0.0002439086451975369
all_best_mse["DryBubble"]["tke_mean"] = 35499.24049194259
all_best_mse["DryBubble"]["temperature_mean"] = 1.6369287103293815e-5
all_best_mse["DryBubble"]["thetal_mean"] = 1.439036815409058e-5
all_best_mse["DryBubble"]["Hvar_mean"] = 8082.579936607187
#
all_best_mse["DYCOMS_RF01"] = OrderedCollections.OrderedDict()
all_best_mse["DYCOMS_RF01"]["qt_mean"] = 0.03222926628265145
all_best_mse["DYCOMS_RF01"]["ql_mean"] = 35.24367441898816
all_best_mse["DYCOMS_RF01"]["updraft_area"] = 29.91828462584687
all_best_mse["DYCOMS_RF01"]["updraft_w"] = 6.11595116920508
all_best_mse["DYCOMS_RF01"]["updraft_qt"] = 1.8880856499695946
all_best_mse["DYCOMS_RF01"]["updraft_thetal"] = 46.187665218886046
all_best_mse["DYCOMS_RF01"]["v_mean"] = 0.010541287021836489
all_best_mse["DYCOMS_RF01"]["u_mean"] = 0.10339578823912228
all_best_mse["DYCOMS_RF01"]["tke_mean"] = 17.149948550493168
all_best_mse["DYCOMS_RF01"]["temperature_mean"] = 9.952426281664225e-5
all_best_mse["DYCOMS_RF01"]["thetal_mean"] = 9.872176762671295e-5
all_best_mse["DYCOMS_RF01"]["Hvar_mean"] = 1280.4368757405791
all_best_mse["DYCOMS_RF01"]["QTvar_mean"] = 514.6927676054853
all_best_mse["DYCOMS_RF01"]["qt_mean"] = 0.03219020337215431
all_best_mse["DYCOMS_RF01"]["ql_mean"] = 34.90616805309427
all_best_mse["DYCOMS_RF01"]["updraft_area"] = 29.853966612468575
all_best_mse["DYCOMS_RF01"]["updraft_w"] = 6.102139340266054
all_best_mse["DYCOMS_RF01"]["updraft_qt"] = 1.8860814628700717
all_best_mse["DYCOMS_RF01"]["updraft_thetal"] = 46.18765704475976
all_best_mse["DYCOMS_RF01"]["v_mean"] = 0.010463555165664547
all_best_mse["DYCOMS_RF01"]["u_mean"] = 0.10329852122057932
all_best_mse["DYCOMS_RF01"]["tke_mean"] = 17.105518846534395
all_best_mse["DYCOMS_RF01"]["temperature_mean"] = 0.0001000176747758382
all_best_mse["DYCOMS_RF01"]["thetal_mean"] = 9.923984901176976e-5
all_best_mse["DYCOMS_RF01"]["Hvar_mean"] = 1280.408036883615
all_best_mse["DYCOMS_RF01"]["QTvar_mean"] = 514.493100959033
#
all_best_mse["DYCOMS_RF02"] = OrderedCollections.OrderedDict()
all_best_mse["DYCOMS_RF02"]["qt_mean"] = 0.05233788915003277
all_best_mse["DYCOMS_RF02"]["ql_mean"] = 6.697294177859994
all_best_mse["DYCOMS_RF02"]["qr_mean"] = 20.281931096948025
all_best_mse["DYCOMS_RF02"]["updraft_area"] = 29.027058046698794
all_best_mse["DYCOMS_RF02"]["updraft_w"] = 9.878615074729101
all_best_mse["DYCOMS_RF02"]["updraft_qt"] = 4.690371468923403
all_best_mse["DYCOMS_RF02"]["updraft_thetal"] = 40.545366095516705
all_best_mse["DYCOMS_RF02"]["v_mean"] = 43.26323125566431
all_best_mse["DYCOMS_RF02"]["u_mean"] = 19.893392920851007
all_best_mse["DYCOMS_RF02"]["tke_mean"] = 11.975979927159647
all_best_mse["DYCOMS_RF02"]["temperature_mean"] = 2.2777109899054987e-5
all_best_mse["DYCOMS_RF02"]["thetal_mean"] = 1.828111212362259e-5
all_best_mse["DYCOMS_RF02"]["Hvar_mean"] = 1188.6712169919972
all_best_mse["DYCOMS_RF02"]["QTvar_mean"] = 264.1835681681652
all_best_mse["DYCOMS_RF02"]["qt_mean"] = 0.05242881589199175
all_best_mse["DYCOMS_RF02"]["ql_mean"] = 7.1954552121017885
all_best_mse["DYCOMS_RF02"]["qr_mean"] = 21.140592728847118
all_best_mse["DYCOMS_RF02"]["updraft_area"] = 28.648700307033906
all_best_mse["DYCOMS_RF02"]["updraft_w"] = 9.102157759959661
all_best_mse["DYCOMS_RF02"]["updraft_qt"] = 4.677162503059372
all_best_mse["DYCOMS_RF02"]["updraft_thetal"] = 40.54508942465268
all_best_mse["DYCOMS_RF02"]["v_mean"] = 43.29499782280301
all_best_mse["DYCOMS_RF02"]["u_mean"] = 19.893374629727017
all_best_mse["DYCOMS_RF02"]["tke_mean"] = 14.089722969784196
all_best_mse["DYCOMS_RF02"]["temperature_mean"] = 2.4808639216725863e-5
all_best_mse["DYCOMS_RF02"]["thetal_mean"] = 1.9854090822300147e-5
all_best_mse["DYCOMS_RF02"]["Hvar_mean"] = 1259.1163139965176
all_best_mse["DYCOMS_RF02"]["QTvar_mean"] = 342.95732990596997
#
all_best_mse["GABLS"] = OrderedCollections.OrderedDict()
all_best_mse["GABLS"]["updraft_thetal"] = 5.0057325456092485e-8
Expand All @@ -86,84 +86,84 @@ all_best_mse["GABLS"]["thetal_mean"] = 5.0057325456092485e-8
all_best_mse["GABLS"]["Hvar_mean"] = 0.09340414179438572
#
all_best_mse["life_cycle_Tan2018"] = OrderedCollections.OrderedDict()
all_best_mse["life_cycle_Tan2018"]["qt_mean"] = 2.1980099071504733e-6
all_best_mse["life_cycle_Tan2018"]["ql_mean"] = 0.007720864286987472
all_best_mse["life_cycle_Tan2018"]["updraft_area"] = 0.003533017591198568
all_best_mse["life_cycle_Tan2018"]["updraft_w"] = 0.005830504321530831
all_best_mse["life_cycle_Tan2018"]["updraft_qt"] = 0.002239096166327306
all_best_mse["life_cycle_Tan2018"]["updraft_thetal"] = 1.2775945212521939e-6
all_best_mse["life_cycle_Tan2018"]["v_mean"] = 0.00012527220315071
all_best_mse["life_cycle_Tan2018"]["u_mean"] = 2.838533918504724e-7
all_best_mse["life_cycle_Tan2018"]["tke_mean"] = 0.000367555656715684
all_best_mse["life_cycle_Tan2018"]["temperature_mean"] = 5.085403105269906e-10
all_best_mse["life_cycle_Tan2018"]["thetal_mean"] = 5.269388688258327e-10
all_best_mse["life_cycle_Tan2018"]["Hvar_mean"] = 159.43305140611452
all_best_mse["life_cycle_Tan2018"]["QTvar_mean"] = 72.86468810491557
all_best_mse["life_cycle_Tan2018"]["qt_mean"] = 0.020171806854823088
all_best_mse["life_cycle_Tan2018"]["ql_mean"] = 16.55376904476486
all_best_mse["life_cycle_Tan2018"]["updraft_area"] = 4.045935338129409
all_best_mse["life_cycle_Tan2018"]["updraft_w"] = 4.033393062729022
all_best_mse["life_cycle_Tan2018"]["updraft_qt"] = 0.06312055546212496
all_best_mse["life_cycle_Tan2018"]["updraft_thetal"] = 3.5567317572989377e-5
all_best_mse["life_cycle_Tan2018"]["v_mean"] = 0.10255562921273272
all_best_mse["life_cycle_Tan2018"]["u_mean"] = 0.00030063658835013224
all_best_mse["life_cycle_Tan2018"]["tke_mean"] = 0.12558848426117689
all_best_mse["life_cycle_Tan2018"]["temperature_mean"] = 9.226065845501585e-6
all_best_mse["life_cycle_Tan2018"]["thetal_mean"] = 9.666638291720499e-6
all_best_mse["life_cycle_Tan2018"]["Hvar_mean"] = 148.89166182594923
all_best_mse["life_cycle_Tan2018"]["QTvar_mean"] = 67.6929850413386
#
all_best_mse["Nieuwstadt"] = OrderedCollections.OrderedDict()
all_best_mse["Nieuwstadt"]["updraft_area"] = 98.80140636900379
all_best_mse["Nieuwstadt"]["updraft_w"] = 14.173869320877497
all_best_mse["Nieuwstadt"]["updraft_thetal"] = 117.60593923755371
all_best_mse["Nieuwstadt"]["u_mean"] = 13.55387743355792
all_best_mse["Nieuwstadt"]["tke_mean"] = 283.65725551447355
all_best_mse["Nieuwstadt"]["temperature_mean"] = 1.1363361194923952e-5
all_best_mse["Nieuwstadt"]["thetal_mean"] = 1.1151563794475668e-5
all_best_mse["Nieuwstadt"]["Hvar_mean"] = 718.0543948198399
all_best_mse["Nieuwstadt"]["updraft_area"] = 112.10957975882653
all_best_mse["Nieuwstadt"]["updraft_w"] = 14.588033431933509
all_best_mse["Nieuwstadt"]["updraft_thetal"] = 117.60593461573117
all_best_mse["Nieuwstadt"]["u_mean"] = 13.55271333393709
all_best_mse["Nieuwstadt"]["tke_mean"] = 283.0506941645682
all_best_mse["Nieuwstadt"]["temperature_mean"] = 1.1410628938335005e-5
all_best_mse["Nieuwstadt"]["thetal_mean"] = 1.1197150405915735e-5
all_best_mse["Nieuwstadt"]["Hvar_mean"] = 719.9710717939784
#
all_best_mse["Rico"] = OrderedCollections.OrderedDict()
all_best_mse["Rico"]["qt_mean"] = 1.135326031628782
all_best_mse["Rico"]["updraft_area"] = 479.44450709772644
all_best_mse["Rico"]["updraft_w"] = 82.9293746327154
all_best_mse["Rico"]["updraft_qt"] = 17.238873618857568
all_best_mse["Rico"]["updraft_thetal"] = 133.87379116769426
all_best_mse["Rico"]["v_mean"] = 0.5144924022690499
all_best_mse["Rico"]["u_mean"] = 0.421100716597955
all_best_mse["Rico"]["tke_mean"] = 155.81504934027012
all_best_mse["Rico"]["temperature_mean"] = 0.0005444683250475638
all_best_mse["Rico"]["ql_mean"] = 28324.553421041834
all_best_mse["Rico"]["qt_mean"] = 0.8915568529497633
all_best_mse["Rico"]["updraft_area"] = 482.7071788979082
all_best_mse["Rico"]["updraft_w"] = 45.699277721275664
all_best_mse["Rico"]["updraft_qt"] = 13.984219462606
all_best_mse["Rico"]["updraft_thetal"] = 133.86163327416165
all_best_mse["Rico"]["v_mean"] = 0.6974206687894534
all_best_mse["Rico"]["u_mean"] = 0.37189477593429493
all_best_mse["Rico"]["tke_mean"] = 160.79024884653123
all_best_mse["Rico"]["temperature_mean"] = 0.0005293027359347022
all_best_mse["Rico"]["ql_mean"] = 75.08746656949579
all_best_mse["Rico"]["qi_mean"] = "NA"
all_best_mse["Rico"]["qr_mean"] = 670.3960900621912
all_best_mse["Rico"]["thetal_mean"] = 0.0005771832405292491
all_best_mse["Rico"]["Hvar_mean"] = 154085.2917284029
all_best_mse["Rico"]["QTvar_mean"] = 34840.39704458511
all_best_mse["Rico"]["qr_mean"] = 769.6650438545246
all_best_mse["Rico"]["thetal_mean"] = 0.0005031085794766699
all_best_mse["Rico"]["Hvar_mean"] = 9174.696982539586
all_best_mse["Rico"]["QTvar_mean"] = 1972.7385780751413
#
all_best_mse["Soares"] = OrderedCollections.OrderedDict()
all_best_mse["Soares"]["qt_mean"] = 0.14292527789723997
all_best_mse["Soares"]["updraft_area"] = 94.35222363436445
all_best_mse["Soares"]["updraft_w"] = 13.065908605313801
all_best_mse["Soares"]["updraft_qt"] = 23.639209142240095
all_best_mse["Soares"]["updraft_thetal"] = 65.72137520255045
all_best_mse["Soares"]["u_mean"] = 93.8971313259509
all_best_mse["Soares"]["tke_mean"] = 216.61325540883917
all_best_mse["Soares"]["temperature_mean"] = 1.3148802683589108e-5
all_best_mse["Soares"]["thetal_mean"] = 1.2072841930884616e-5
all_best_mse["Soares"]["Hvar_mean"] = 680.5458129832058
all_best_mse["Soares"]["qt_mean"] = 0.11271305497300416
all_best_mse["Soares"]["updraft_area"] = 101.11400451128685
all_best_mse["Soares"]["updraft_w"] = 14.146144460387697
all_best_mse["Soares"]["updraft_qt"] = 23.527627665482296
all_best_mse["Soares"]["updraft_thetal"] = 65.72134058135259
all_best_mse["Soares"]["u_mean"] = 93.79119005503397
all_best_mse["Soares"]["tke_mean"] = 209.99387775984619
all_best_mse["Soares"]["temperature_mean"] = 1.320395745424993e-5
all_best_mse["Soares"]["thetal_mean"] = 1.204745446281957e-5
all_best_mse["Soares"]["Hvar_mean"] = 697.9330920610389
#
all_best_mse["TRMM_LBA"] = OrderedCollections.OrderedDict()
all_best_mse["TRMM_LBA"]["qt_mean"] = 2.1442449884684387
all_best_mse["TRMM_LBA"]["updraft_area"] = 1254.0204932517388
all_best_mse["TRMM_LBA"]["updraft_w"] = 9840.030762797738
all_best_mse["TRMM_LBA"]["updraft_qt"] = 263.6487773314778
all_best_mse["TRMM_LBA"]["updraft_thetal"] = 541.3714404624005
all_best_mse["TRMM_LBA"]["v_mean"] = 71.08717681449379
all_best_mse["TRMM_LBA"]["u_mean"] = 30.401331899246482
all_best_mse["TRMM_LBA"]["tke_mean"] = 48667.31593951556
all_best_mse["TRMM_LBA"]["temperature_mean"] = 0.0005684346487320295
all_best_mse["TRMM_LBA"]["ql_mean"] = 248342.16732818636
all_best_mse["TRMM_LBA"]["qt_mean"] = 2.158945215178641
all_best_mse["TRMM_LBA"]["updraft_area"] = 1253.439729231915
all_best_mse["TRMM_LBA"]["updraft_w"] = 9878.718995281484
all_best_mse["TRMM_LBA"]["updraft_qt"] = 263.03596919055025
all_best_mse["TRMM_LBA"]["updraft_thetal"] = 541.3148993223426
all_best_mse["TRMM_LBA"]["v_mean"] = 71.03842471884745
all_best_mse["TRMM_LBA"]["u_mean"] = 30.388590194053364
all_best_mse["TRMM_LBA"]["tke_mean"] = 49629.51054235478
all_best_mse["TRMM_LBA"]["temperature_mean"] = 0.0005737239966376086
all_best_mse["TRMM_LBA"]["ql_mean"] = 249942.5982903604
all_best_mse["TRMM_LBA"]["qi_mean"] = "NA"
all_best_mse["TRMM_LBA"]["qr_mean"] = "NA"
all_best_mse["TRMM_LBA"]["qs_mean"] = "NA"
all_best_mse["TRMM_LBA"]["thetal_mean"] = 0.0005004674375363604
all_best_mse["TRMM_LBA"]["Hvar_mean"] = 447022.7713463382
all_best_mse["TRMM_LBA"]["QTvar_mean"] = 6288.665467442509
all_best_mse["TRMM_LBA"]["thetal_mean"] = 0.0005039122622028263
all_best_mse["TRMM_LBA"]["Hvar_mean"] = 448888.3884070762
all_best_mse["TRMM_LBA"]["QTvar_mean"] = 6271.940536560742
#
all_best_mse["LES_driven_SCM"] = OrderedCollections.OrderedDict()
all_best_mse["LES_driven_SCM"]["qt_mean"] = 0.1542447335052964
all_best_mse["LES_driven_SCM"]["v_mean"] = 0.32696315559512423
all_best_mse["LES_driven_SCM"]["u_mean"] = 0.0769025499324574
all_best_mse["LES_driven_SCM"]["temperature_mean"] = 5.7834193462998045e-5
all_best_mse["LES_driven_SCM"]["ql_mean"] = 18320.242710110357
all_best_mse["LES_driven_SCM"]["thetal_mean"] = 5.255557008915138e-5
all_best_mse["LES_driven_SCM"]["qt_mean"] = 0.1484084653743486
all_best_mse["LES_driven_SCM"]["v_mean"] = 0.33921695947124486
all_best_mse["LES_driven_SCM"]["u_mean"] = 0.08104493298620415
all_best_mse["LES_driven_SCM"]["temperature_mean"] = 5.4200539879417664e-5
all_best_mse["LES_driven_SCM"]["ql_mean"] = 15786.512018314408
all_best_mse["LES_driven_SCM"]["thetal_mean"] = 5.3216351612268395e-5
#
#################################
#################################
Expand Down
12 changes: 11 additions & 1 deletion src/closures/entr_detr.jl
Original file line number Diff line number Diff line change
Expand Up @@ -171,10 +171,20 @@ function εδ_dyn(εδ_model, εδ_vars, entr_dim_scale, detr_dim_scale, ε_nond
δ_dim_scale = entrainment_inv_length_scale(εδ_model, εδ_vars, detr_dim_scale)

area_limiter = max_area_limiter(εδ_model, εδ_vars.max_area, εδ_vars.a_up)
min_limiter = min_area_limiter(εδ_model, εδ_vars.a_up)

ε_dim_scale = min(ε_dim_scale, 1.0)
δ_dim_scale = min(δ_dim_scale, 1.0)

# fractional dynamical entrainment / detrainment [1 / m]
ε_dyn = ε_dim_scale * ε_nondim
δ_dyn = δ_dim_scale * (δ_nondim + area_limiter)
δ_dyn = δ_dim_scale * δ_nondim

if εδ_params(εδ_model).limit_min_area
ε_dyn += max(δ_dyn, ε_dyn) * min_limiter
end

δ_dyn += max(ε_dyn, δ_dyn) * area_limiter

return ε_dyn, δ_dyn
end
Expand Down
Loading
Loading