-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
update results and add benchmark artifacts
-- updated the results-imagenet.csv to contain latest results of simplenet variants so far -- added the benchmark results for inference with fp32, NHWC for both pytorch 1.10 and 1.11 for better comparison, accuracies have been added to the benchmark results. The hardware and software stack used to run benchmark is as follows: OS: Ubuntu 20.04.4 kernel version: 5.13.0-51-generic Driver version: 515.86.01 Python version: 3.9.7 (anaconda installation) GPU: GTX1080 CPU: 4790K RAM: 32Gig
- Loading branch information
Showing
19 changed files
with
957 additions
and
533 deletions.
There are no files selected for viewing
46 changes: 46 additions & 0 deletions
46
ImageNet/training_scripts/imagenet_training/model_list_normal.txt
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,46 @@ | ||
mobilenetv3_rw | ||
tf_mobilenetv3_large_100 | ||
mobilenetv2_100 | ||
tf_mobilenetv3_large_minimal_100 | ||
mobilenetv2_110d | ||
mobilenetv3_large_100 | ||
tf_mobilenetv3_large_075 | ||
efficientnet_lite0 | ||
tf_efficientnet_lite0 | ||
densenet121 | ||
tv_densenet121 | ||
mnasnet_100 | ||
dla34 | ||
tinynet_b | ||
tf_mixnet_s | ||
ghostnet_100 | ||
crossvit_9_240 | ||
regnetx_006 | ||
vit_base_patch32_224_sam | ||
resnest14d | ||
tv_resnet34 | ||
swsl_resnet18 | ||
resnet26 | ||
resnet34 | ||
legacy_seresnet18 | ||
resnet18 | ||
gluon_resnet18_v1b | ||
resnet18d | ||
deit_tiny_patch16_224 | ||
mixer_l16_224 | ||
vit_tiny_r_s16_p8_224 | ||
repvgg_b0 | ||
vgg13_bn | ||
vgg16 | ||
vgg11_bn | ||
vgg13 | ||
vgg11 | ||
vgg19 | ||
vgg16_bn | ||
vgg19_bn | ||
simplenetv1_5m_m1 | ||
simplenetv1_5m_m2 | ||
simplenetv1_9m_m1 | ||
simplenetv1_9m_m2 | ||
simplenetv1_small_m1_075 | ||
simplenetv1_small_m2_075 |
37 changes: 37 additions & 0 deletions
37
ImageNet/training_scripts/imagenet_training/model_list_normal_known.txt
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
simplenetv1_5m_m1 | ||
simplenetv1_5m_m2 | ||
simplenetv1_9m_m1 | ||
simplenetv1_9m_m2 | ||
simplenetv1_small_m1_075 | ||
simplenetv1_small_m2_075 | ||
mobilenetv3_large_100 | ||
mobilenetv2_100 | ||
densenet121 | ||
tf_mobilenetv3_large_100 | ||
efficientnet_lite0 | ||
resnet26 | ||
resnet34 | ||
mobilenetv2_110d | ||
tinynet_b | ||
tf_efficientnet_lite0 | ||
mnasnet_100 | ||
dla34 | ||
ghostnet_100 | ||
crossvit_9_240 | ||
regnetx_006 | ||
vit_base_patch32_224_sam | ||
tf_mobilenetv3_large_075 | ||
tf_mobilenetv3_large_minimal_100 | ||
deit_tiny_patch16_224 | ||
vit_tiny_r_s16_p8_224 | ||
repvgg_b0 | ||
vgg19_bn | ||
vgg19 | ||
vgg13_bn | ||
vgg16_bn | ||
vgg16 | ||
vgg11_bn | ||
vgg13 | ||
vgg11 | ||
resnet18 | ||
|
16 changes: 16 additions & 0 deletions
16
ImageNet/training_scripts/imagenet_training/model_list_small.txt
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
tf_mobilenetv3_small_100 | ||
dla60x_c | ||
mobilenetv3_small_100 | ||
mnasnet_small | ||
dla46x_c | ||
mobilenetv2_050 | ||
tf_mobilenetv3_small_075 | ||
mobilenetv3_small_075 | ||
dla46_c | ||
lcnet_050 | ||
tf_mobilenetv3_small_minimal_100 | ||
mobilenetv3_small_050 | ||
simplenetv1_small_m1_05 | ||
simplenetv1_small_m2_05 | ||
simplenetv1_small_m1_075 | ||
simplenetv1_small_m2_075 |
32 changes: 32 additions & 0 deletions
32
ImageNet/training_scripts/imagenet_training/results/add_acc_to_benchmarks.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,32 @@ | ||
import pandas as pd | ||
import argparse | ||
|
||
parser = argparse.ArgumentParser(description="A small utility to merge model accuracy with timm benchmarks") | ||
parser.add_argument( | ||
"--imagenet-results", | ||
default="./results-imagenet.csv", | ||
type=str, | ||
metavar="FILENAME", | ||
help="the imagenet results csv file to get the accuracies from", | ||
) | ||
parser.add_argument( | ||
"--bench-csv", | ||
default="./benchmark_inference_GTX1080_fp32_small_torch1.10.csv", | ||
type=str, | ||
metavar="FILENAME", | ||
help="the csv file for which you want to add accuracy", | ||
) | ||
|
||
|
||
def add_acc_to_csv(imagenet_results, csv_filename): | ||
df_imagenet_results = pd.read_csv(imagenet_results) | ||
df_imagenet_accs = df_imagenet_results[["model", "top1", "top5"]] | ||
df_csv = pd.read_csv(csv_filename) | ||
df_csv_acc = pd.merge(df_csv, df_imagenet_accs, on=["model"]) | ||
df_csv_acc.to_csv(csv_filename.replace(".csv", "_with_accuracy.csv"), index=False) | ||
print(f"{csv_filename} is done") | ||
|
||
|
||
if __name__ == "__main__": | ||
args = parser.parse_args() | ||
add_acc_to_csv(args.imagenet_results, args.bench_csv) |
119 changes: 0 additions & 119 deletions
119
ImageNet/training_scripts/imagenet_training/results/benchmark_inference_GTX1080.csv
This file was deleted.
Oops, something went wrong.
37 changes: 37 additions & 0 deletions
37
...pts/imagenet_training/results/benchmark_inference_GTX1080_fp32_normal_known_torch1.10.csv
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
model,infer_samples_per_sec,infer_step_time,infer_batch_size,infer_img_size,infer_gmacs,infer_macts,param_count | ||
vit_tiny_r_s16_p8_224,1809.8,141.431,256,224,0.44,2.06,6.34 | ||
simplenetv1_small_m1_075,1498.12,170.855,256,224,0.83,1.56,3.29 | ||
simplenetv1_small_m2_075,1222.18,209.433,256,224,1.02,1.79,3.29 | ||
simplenetv1_5m_m1,1034.1,247.529,256,224,1.46,2.09,5.75 | ||
deit_tiny_patch16_224,910.68,281.08,256,224,1.26,5.97,5.72 | ||
resnet18,832.07,307.634,256,224,1.82,2.48,11.69 | ||
simplenetv1_5m_m2,818.45,312.755,256,224,1.81,2.39,5.75 | ||
vit_base_patch32_224_sam,550.96,464.615,256,224,4.41,5.01,88.22 | ||
crossvit_9_240,540.26,473.812,256,240,1.85,9.52,8.55 | ||
tinynet_b,530.52,482.515,256,188,0.21,4.44,3.73 | ||
resnet26,519.5,492.742,256,224,2.36,7.35,16.0 | ||
tf_mobilenetv3_large_075,505.34,506.555,256,224,0.16,4.0,3.99 | ||
regnetx_006,475.48,538.373,256,224,0.61,3.98,6.2 | ||
resnet34,456.22,561.098,256,224,3.67,3.74,21.8 | ||
simplenetv1_9m_m1,455.52,561.959,256,224,2.96,3.41,9.51 | ||
dla34,441.47,579.845,256,224,3.07,5.02,15.74 | ||
repvgg_b0,434.24,589.509,256,224,3.41,6.15,15.82 | ||
ghostnet_100,406.6,629.583,256,224,0.15,3.55,5.18 | ||
tf_mobilenetv3_large_minimal_100,406.07,630.397,256,224,0.22,4.4,3.92 | ||
mobilenetv3_large_100,399.88,640.158,256,224,0.23,4.41,5.48 | ||
tf_mobilenetv3_large_100,387.42,660.742,256,224,0.23,4.41,5.48 | ||
simplenetv1_9m_m2,387.08,661.332,256,224,3.74,3.86,9.51 | ||
mobilenetv2_100,294.32,869.767,256,224,0.31,6.68,3.5 | ||
densenet121,271.19,943.952,256,224,2.87,6.9,7.98 | ||
vgg11,265.22,965.196,256,224,7.61,7.44,132.86 | ||
mnasnet_100,261.47,979.059,256,224,0.33,5.46,4.38 | ||
vgg11_bn,252.21,507.471,128,224,7.62,7.44,132.87 | ||
mobilenetv2_110d,230.59,1110.181,256,224,0.45,8.71,4.52 | ||
efficientnet_lite0,223.51,1145.336,256,224,0.4,6.74,4.65 | ||
tf_efficientnet_lite0,219.46,1166.486,256,224,0.4,6.74,4.65 | ||
vgg13,140.34,912.059,128,224,11.31,12.25,133.05 | ||
vgg13_bn,132.22,968.059,128,224,11.33,12.25,133.05 | ||
vgg16,115.5,1108.21,128,224,15.47,13.56,138.36 | ||
vgg16_bn,109.38,1170.163,128,224,15.5,13.56,138.37 | ||
vgg19,98.14,1304.284,128,224,19.63,14.86,143.67 | ||
vgg19_bn,93.53,1368.463,128,224,19.66,14.86,143.68 |
37 changes: 37 additions & 0 deletions
37
...raining/results/benchmark_inference_GTX1080_fp32_normal_known_torch1.10_with_accuracy.csv
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
model,infer_samples_per_sec,infer_step_time,infer_batch_size,infer_img_size,infer_gmacs,infer_macts,param_count,top1,top5 | ||
vit_tiny_r_s16_p8_224,1809.8,141.431,256,224,0.44,2.06,6.34,71.792,90.822 | ||
simplenetv1_small_m1_075,1498.12,170.855,256,224,0.83,1.56,3.29,67.764,87.66 | ||
simplenetv1_small_m2_075,1222.18,209.433,256,224,1.02,1.79,3.29,68.15,87.762 | ||
simplenetv1_5m_m1,1034.1,247.529,256,224,1.46,2.09,5.75,71.37,90.1 | ||
deit_tiny_patch16_224,910.68,281.08,256,224,1.26,5.97,5.72,72.172,91.114 | ||
resnet18,832.07,307.634,256,224,1.82,2.48,11.69,69.744,89.082 | ||
simplenetv1_5m_m2,818.45,312.755,256,224,1.81,2.39,5.75,71.936,90.3 | ||
vit_base_patch32_224_sam,550.96,464.615,256,224,4.41,5.01,88.22,73.694,91.01 | ||
crossvit_9_240,540.26,473.812,256,240,1.85,9.52,8.55,73.96,91.968 | ||
tinynet_b,530.52,482.515,256,188,0.21,4.44,3.73,74.976,92.184 | ||
resnet26,519.5,492.742,256,224,2.36,7.35,16.0,75.3,92.578 | ||
tf_mobilenetv3_large_075,505.34,506.555,256,224,0.16,4.0,3.99,73.436,91.344 | ||
regnetx_006,475.48,538.373,256,224,0.61,3.98,6.2,73.86,91.672 | ||
resnet34,456.22,561.098,256,224,3.67,3.74,21.8,75.114,92.284 | ||
simplenetv1_9m_m1,455.52,561.959,256,224,2.96,3.41,9.51,73.376,91.048 | ||
dla34,441.47,579.845,256,224,3.07,5.02,15.74,74.62,92.072 | ||
repvgg_b0,434.24,589.509,256,224,3.41,6.15,15.82,75.16,92.418 | ||
ghostnet_100,406.6,629.583,256,224,0.15,3.55,5.18,73.974,91.46 | ||
tf_mobilenetv3_large_minimal_100,406.07,630.397,256,224,0.22,4.4,3.92,72.25,90.63 | ||
mobilenetv3_large_100,399.88,640.158,256,224,0.23,4.41,5.48,75.766,92.544 | ||
tf_mobilenetv3_large_100,387.42,660.742,256,224,0.23,4.41,5.48,75.518,92.604 | ||
simplenetv1_9m_m2,387.08,661.332,256,224,3.74,3.86,9.51,74.17,91.614 | ||
mobilenetv2_100,294.32,869.767,256,224,0.31,6.68,3.5,72.97,91.02 | ||
densenet121,271.19,943.952,256,224,2.87,6.9,7.98,75.584,92.652 | ||
vgg11,265.22,965.196,256,224,7.61,7.44,132.86,69.028,88.626 | ||
mnasnet_100,261.47,979.059,256,224,0.33,5.46,4.38,74.658,92.112 | ||
vgg11_bn,252.21,507.471,128,224,7.62,7.44,132.87,70.36,89.802 | ||
mobilenetv2_110d,230.59,1110.181,256,224,0.45,8.71,4.52,75.038,92.184 | ||
efficientnet_lite0,223.51,1145.336,256,224,0.4,6.74,4.65,75.476,92.512 | ||
tf_efficientnet_lite0,219.46,1166.486,256,224,0.4,6.74,4.65,74.832,92.174 | ||
vgg13,140.34,912.059,128,224,11.31,12.25,133.05,69.926,89.246 | ||
vgg13_bn,132.22,968.059,128,224,11.33,12.25,133.05,71.594,90.376 | ||
vgg16,115.5,1108.21,128,224,15.47,13.56,138.36,71.59,90.382 | ||
vgg16_bn,109.38,1170.163,128,224,15.5,13.56,138.37,73.35,91.504 | ||
vgg19,98.14,1304.284,128,224,19.63,14.86,143.67,72.366,90.87 | ||
vgg19_bn,93.53,1368.463,128,224,19.66,14.86,143.68,74.214,91.848 |
37 changes: 37 additions & 0 deletions
37
...pts/imagenet_training/results/benchmark_inference_GTX1080_fp32_normal_known_torch1.11.csv
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
model,infer_samples_per_sec,infer_step_time,infer_batch_size,infer_img_size,infer_gmacs,infer_macts,param_count | ||
vit_tiny_r_s16_p8_224,1882.23,135.988,256,224,0.44,2.06,6.34 | ||
simplenetv1_small_m1_075,1516.74,168.762,256,224,0.83,1.56,3.29 | ||
simplenetv1_small_m2_075,1260.89,203.01,256,224,1.02,1.79,3.29 | ||
simplenetv1_5m_m1,1107.7,231.088,256,224,1.46,2.09,5.75 | ||
deit_tiny_patch16_224,991.41,258.198,256,224,1.26,5.97,5.72 | ||
resnet18,876.92,291.907,256,224,1.82,2.48,11.69 | ||
simplenetv1_5m_m2,835.17,306.502,256,224,1.81,2.39,5.75 | ||
crossvit_9_240,602.13,425.137,256,240,1.85,9.52,8.55 | ||
vit_base_patch32_224_sam,571.37,448.024,256,224,4.41,5.01,88.22 | ||
tinynet_b,530.15,482.86,256,188,0.21,4.44,3.73 | ||
resnet26,524.36,488.193,256,224,2.36,7.35,16.0 | ||
tf_mobilenetv3_large_075,505.13,506.778,256,224,0.16,4.0,3.99 | ||
resnet34,491.96,520.334,256,224,3.67,3.74,21.8 | ||
regnetx_006,478.41,535.075,256,224,0.61,3.98,6.2 | ||
dla34,472.49,541.773,256,224,3.07,5.02,15.74 | ||
simplenetv1_9m_m1,459.21,557.458,256,224,2.96,3.41,9.51 | ||
repvgg_b0,455.36,562.169,256,224,3.41,6.15,15.82 | ||
ghostnet_100,407.03,628.922,256,224,0.15,3.55,5.18 | ||
tf_mobilenetv3_large_minimal_100,406.84,629.211,256,224,0.22,4.4,3.92 | ||
mobilenetv3_large_100,402.08,636.663,256,224,0.23,4.41,5.48 | ||
simplenetv1_9m_m2,389.94,656.492,256,224,3.74,3.86,9.51 | ||
tf_mobilenetv3_large_100,388.3,659.264,256,224,0.23,4.41,5.48 | ||
mobilenetv2_100,295.68,865.772,256,224,0.31,6.68,3.5 | ||
densenet121,293.94,870.881,256,224,2.87,6.9,7.98 | ||
mnasnet_100,262.25,976.131,256,224,0.33,5.46,4.38 | ||
vgg11,260.38,983.145,256,224,7.61,7.44,132.86 | ||
vgg11_bn,248.92,514.193,128,224,7.62,7.44,132.87 | ||
mobilenetv2_110d,230.8,1109.144,256,224,0.45,8.71,4.52 | ||
efficientnet_lite0,224.81,1138.729,256,224,0.4,6.74,4.65 | ||
tf_efficientnet_lite0,219.93,1163.953,256,224,0.4,6.74,4.65 | ||
vgg13,154.03,830.996,128,224,11.31,12.25,133.05 | ||
vgg13_bn,144.39,886.483,128,224,11.33,12.25,133.05 | ||
vgg16,123.7,1034.687,128,224,15.47,13.56,138.36 | ||
vgg16_bn,117.06,1093.467,128,224,15.5,13.56,138.37 | ||
vgg19,103.71,1234.193,128,224,19.63,14.86,143.67 | ||
vgg19_bn,98.59,1298.317,128,224,19.66,14.86,143.68 |
Oops, something went wrong.