Skip to content

Commit

Permalink
update results and add benchmark artifacts
Browse files Browse the repository at this point in the history
-- updated the results-imagenet.csv to contain latest results of simplenet variants so far
-- added the benchmark results for inference with fp32, NHWC for both pytorch 1.10 and 1.11
for better comparison, accuracies have been added to the benchmark results.

The hardware and software stack used to run benchmark is as follows:
OS: Ubuntu 20.04.4
kernel version: 5.13.0-51-generic
Driver version: 515.86.01
Python version: 3.9.7 (anaconda installation)
GPU: GTX1080
CPU: 4790K
RAM: 32Gig
  • Loading branch information
Coderx7 committed Feb 15, 2023
1 parent 67fc2e7 commit adae90b
Show file tree
Hide file tree
Showing 19 changed files with 957 additions and 533 deletions.
46 changes: 46 additions & 0 deletions ImageNet/training_scripts/imagenet_training/model_list_normal.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
mobilenetv3_rw
tf_mobilenetv3_large_100
mobilenetv2_100
tf_mobilenetv3_large_minimal_100
mobilenetv2_110d
mobilenetv3_large_100
tf_mobilenetv3_large_075
efficientnet_lite0
tf_efficientnet_lite0
densenet121
tv_densenet121
mnasnet_100
dla34
tinynet_b
tf_mixnet_s
ghostnet_100
crossvit_9_240
regnetx_006
vit_base_patch32_224_sam
resnest14d
tv_resnet34
swsl_resnet18
resnet26
resnet34
legacy_seresnet18
resnet18
gluon_resnet18_v1b
resnet18d
deit_tiny_patch16_224
mixer_l16_224
vit_tiny_r_s16_p8_224
repvgg_b0
vgg13_bn
vgg16
vgg11_bn
vgg13
vgg11
vgg19
vgg16_bn
vgg19_bn
simplenetv1_5m_m1
simplenetv1_5m_m2
simplenetv1_9m_m1
simplenetv1_9m_m2
simplenetv1_small_m1_075
simplenetv1_small_m2_075
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
simplenetv1_5m_m1
simplenetv1_5m_m2
simplenetv1_9m_m1
simplenetv1_9m_m2
simplenetv1_small_m1_075
simplenetv1_small_m2_075
mobilenetv3_large_100
mobilenetv2_100
densenet121
tf_mobilenetv3_large_100
efficientnet_lite0
resnet26
resnet34
mobilenetv2_110d
tinynet_b
tf_efficientnet_lite0
mnasnet_100
dla34
ghostnet_100
crossvit_9_240
regnetx_006
vit_base_patch32_224_sam
tf_mobilenetv3_large_075
tf_mobilenetv3_large_minimal_100
deit_tiny_patch16_224
vit_tiny_r_s16_p8_224
repvgg_b0
vgg19_bn
vgg19
vgg13_bn
vgg16_bn
vgg16
vgg11_bn
vgg13
vgg11
resnet18

16 changes: 16 additions & 0 deletions ImageNet/training_scripts/imagenet_training/model_list_small.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
tf_mobilenetv3_small_100
dla60x_c
mobilenetv3_small_100
mnasnet_small
dla46x_c
mobilenetv2_050
tf_mobilenetv3_small_075
mobilenetv3_small_075
dla46_c
lcnet_050
tf_mobilenetv3_small_minimal_100
mobilenetv3_small_050
simplenetv1_small_m1_05
simplenetv1_small_m2_05
simplenetv1_small_m1_075
simplenetv1_small_m2_075
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
import pandas as pd
import argparse

parser = argparse.ArgumentParser(description="A small utility to merge model accuracy with timm benchmarks")
parser.add_argument(
"--imagenet-results",
default="./results-imagenet.csv",
type=str,
metavar="FILENAME",
help="the imagenet results csv file to get the accuracies from",
)
parser.add_argument(
"--bench-csv",
default="./benchmark_inference_GTX1080_fp32_small_torch1.10.csv",
type=str,
metavar="FILENAME",
help="the csv file for which you want to add accuracy",
)


def add_acc_to_csv(imagenet_results, csv_filename):
df_imagenet_results = pd.read_csv(imagenet_results)
df_imagenet_accs = df_imagenet_results[["model", "top1", "top5"]]
df_csv = pd.read_csv(csv_filename)
df_csv_acc = pd.merge(df_csv, df_imagenet_accs, on=["model"])
df_csv_acc.to_csv(csv_filename.replace(".csv", "_with_accuracy.csv"), index=False)
print(f"{csv_filename} is done")


if __name__ == "__main__":
args = parser.parse_args()
add_acc_to_csv(args.imagenet_results, args.bench_csv)

This file was deleted.

Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
model,infer_samples_per_sec,infer_step_time,infer_batch_size,infer_img_size,infer_gmacs,infer_macts,param_count
vit_tiny_r_s16_p8_224,1809.8,141.431,256,224,0.44,2.06,6.34
simplenetv1_small_m1_075,1498.12,170.855,256,224,0.83,1.56,3.29
simplenetv1_small_m2_075,1222.18,209.433,256,224,1.02,1.79,3.29
simplenetv1_5m_m1,1034.1,247.529,256,224,1.46,2.09,5.75
deit_tiny_patch16_224,910.68,281.08,256,224,1.26,5.97,5.72
resnet18,832.07,307.634,256,224,1.82,2.48,11.69
simplenetv1_5m_m2,818.45,312.755,256,224,1.81,2.39,5.75
vit_base_patch32_224_sam,550.96,464.615,256,224,4.41,5.01,88.22
crossvit_9_240,540.26,473.812,256,240,1.85,9.52,8.55
tinynet_b,530.52,482.515,256,188,0.21,4.44,3.73
resnet26,519.5,492.742,256,224,2.36,7.35,16.0
tf_mobilenetv3_large_075,505.34,506.555,256,224,0.16,4.0,3.99
regnetx_006,475.48,538.373,256,224,0.61,3.98,6.2
resnet34,456.22,561.098,256,224,3.67,3.74,21.8
simplenetv1_9m_m1,455.52,561.959,256,224,2.96,3.41,9.51
dla34,441.47,579.845,256,224,3.07,5.02,15.74
repvgg_b0,434.24,589.509,256,224,3.41,6.15,15.82
ghostnet_100,406.6,629.583,256,224,0.15,3.55,5.18
tf_mobilenetv3_large_minimal_100,406.07,630.397,256,224,0.22,4.4,3.92
mobilenetv3_large_100,399.88,640.158,256,224,0.23,4.41,5.48
tf_mobilenetv3_large_100,387.42,660.742,256,224,0.23,4.41,5.48
simplenetv1_9m_m2,387.08,661.332,256,224,3.74,3.86,9.51
mobilenetv2_100,294.32,869.767,256,224,0.31,6.68,3.5
densenet121,271.19,943.952,256,224,2.87,6.9,7.98
vgg11,265.22,965.196,256,224,7.61,7.44,132.86
mnasnet_100,261.47,979.059,256,224,0.33,5.46,4.38
vgg11_bn,252.21,507.471,128,224,7.62,7.44,132.87
mobilenetv2_110d,230.59,1110.181,256,224,0.45,8.71,4.52
efficientnet_lite0,223.51,1145.336,256,224,0.4,6.74,4.65
tf_efficientnet_lite0,219.46,1166.486,256,224,0.4,6.74,4.65
vgg13,140.34,912.059,128,224,11.31,12.25,133.05
vgg13_bn,132.22,968.059,128,224,11.33,12.25,133.05
vgg16,115.5,1108.21,128,224,15.47,13.56,138.36
vgg16_bn,109.38,1170.163,128,224,15.5,13.56,138.37
vgg19,98.14,1304.284,128,224,19.63,14.86,143.67
vgg19_bn,93.53,1368.463,128,224,19.66,14.86,143.68
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
model,infer_samples_per_sec,infer_step_time,infer_batch_size,infer_img_size,infer_gmacs,infer_macts,param_count,top1,top5
vit_tiny_r_s16_p8_224,1809.8,141.431,256,224,0.44,2.06,6.34,71.792,90.822
simplenetv1_small_m1_075,1498.12,170.855,256,224,0.83,1.56,3.29,67.764,87.66
simplenetv1_small_m2_075,1222.18,209.433,256,224,1.02,1.79,3.29,68.15,87.762
simplenetv1_5m_m1,1034.1,247.529,256,224,1.46,2.09,5.75,71.37,90.1
deit_tiny_patch16_224,910.68,281.08,256,224,1.26,5.97,5.72,72.172,91.114
resnet18,832.07,307.634,256,224,1.82,2.48,11.69,69.744,89.082
simplenetv1_5m_m2,818.45,312.755,256,224,1.81,2.39,5.75,71.936,90.3
vit_base_patch32_224_sam,550.96,464.615,256,224,4.41,5.01,88.22,73.694,91.01
crossvit_9_240,540.26,473.812,256,240,1.85,9.52,8.55,73.96,91.968
tinynet_b,530.52,482.515,256,188,0.21,4.44,3.73,74.976,92.184
resnet26,519.5,492.742,256,224,2.36,7.35,16.0,75.3,92.578
tf_mobilenetv3_large_075,505.34,506.555,256,224,0.16,4.0,3.99,73.436,91.344
regnetx_006,475.48,538.373,256,224,0.61,3.98,6.2,73.86,91.672
resnet34,456.22,561.098,256,224,3.67,3.74,21.8,75.114,92.284
simplenetv1_9m_m1,455.52,561.959,256,224,2.96,3.41,9.51,73.376,91.048
dla34,441.47,579.845,256,224,3.07,5.02,15.74,74.62,92.072
repvgg_b0,434.24,589.509,256,224,3.41,6.15,15.82,75.16,92.418
ghostnet_100,406.6,629.583,256,224,0.15,3.55,5.18,73.974,91.46
tf_mobilenetv3_large_minimal_100,406.07,630.397,256,224,0.22,4.4,3.92,72.25,90.63
mobilenetv3_large_100,399.88,640.158,256,224,0.23,4.41,5.48,75.766,92.544
tf_mobilenetv3_large_100,387.42,660.742,256,224,0.23,4.41,5.48,75.518,92.604
simplenetv1_9m_m2,387.08,661.332,256,224,3.74,3.86,9.51,74.17,91.614
mobilenetv2_100,294.32,869.767,256,224,0.31,6.68,3.5,72.97,91.02
densenet121,271.19,943.952,256,224,2.87,6.9,7.98,75.584,92.652
vgg11,265.22,965.196,256,224,7.61,7.44,132.86,69.028,88.626
mnasnet_100,261.47,979.059,256,224,0.33,5.46,4.38,74.658,92.112
vgg11_bn,252.21,507.471,128,224,7.62,7.44,132.87,70.36,89.802
mobilenetv2_110d,230.59,1110.181,256,224,0.45,8.71,4.52,75.038,92.184
efficientnet_lite0,223.51,1145.336,256,224,0.4,6.74,4.65,75.476,92.512
tf_efficientnet_lite0,219.46,1166.486,256,224,0.4,6.74,4.65,74.832,92.174
vgg13,140.34,912.059,128,224,11.31,12.25,133.05,69.926,89.246
vgg13_bn,132.22,968.059,128,224,11.33,12.25,133.05,71.594,90.376
vgg16,115.5,1108.21,128,224,15.47,13.56,138.36,71.59,90.382
vgg16_bn,109.38,1170.163,128,224,15.5,13.56,138.37,73.35,91.504
vgg19,98.14,1304.284,128,224,19.63,14.86,143.67,72.366,90.87
vgg19_bn,93.53,1368.463,128,224,19.66,14.86,143.68,74.214,91.848
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
model,infer_samples_per_sec,infer_step_time,infer_batch_size,infer_img_size,infer_gmacs,infer_macts,param_count
vit_tiny_r_s16_p8_224,1882.23,135.988,256,224,0.44,2.06,6.34
simplenetv1_small_m1_075,1516.74,168.762,256,224,0.83,1.56,3.29
simplenetv1_small_m2_075,1260.89,203.01,256,224,1.02,1.79,3.29
simplenetv1_5m_m1,1107.7,231.088,256,224,1.46,2.09,5.75
deit_tiny_patch16_224,991.41,258.198,256,224,1.26,5.97,5.72
resnet18,876.92,291.907,256,224,1.82,2.48,11.69
simplenetv1_5m_m2,835.17,306.502,256,224,1.81,2.39,5.75
crossvit_9_240,602.13,425.137,256,240,1.85,9.52,8.55
vit_base_patch32_224_sam,571.37,448.024,256,224,4.41,5.01,88.22
tinynet_b,530.15,482.86,256,188,0.21,4.44,3.73
resnet26,524.36,488.193,256,224,2.36,7.35,16.0
tf_mobilenetv3_large_075,505.13,506.778,256,224,0.16,4.0,3.99
resnet34,491.96,520.334,256,224,3.67,3.74,21.8
regnetx_006,478.41,535.075,256,224,0.61,3.98,6.2
dla34,472.49,541.773,256,224,3.07,5.02,15.74
simplenetv1_9m_m1,459.21,557.458,256,224,2.96,3.41,9.51
repvgg_b0,455.36,562.169,256,224,3.41,6.15,15.82
ghostnet_100,407.03,628.922,256,224,0.15,3.55,5.18
tf_mobilenetv3_large_minimal_100,406.84,629.211,256,224,0.22,4.4,3.92
mobilenetv3_large_100,402.08,636.663,256,224,0.23,4.41,5.48
simplenetv1_9m_m2,389.94,656.492,256,224,3.74,3.86,9.51
tf_mobilenetv3_large_100,388.3,659.264,256,224,0.23,4.41,5.48
mobilenetv2_100,295.68,865.772,256,224,0.31,6.68,3.5
densenet121,293.94,870.881,256,224,2.87,6.9,7.98
mnasnet_100,262.25,976.131,256,224,0.33,5.46,4.38
vgg11,260.38,983.145,256,224,7.61,7.44,132.86
vgg11_bn,248.92,514.193,128,224,7.62,7.44,132.87
mobilenetv2_110d,230.8,1109.144,256,224,0.45,8.71,4.52
efficientnet_lite0,224.81,1138.729,256,224,0.4,6.74,4.65
tf_efficientnet_lite0,219.93,1163.953,256,224,0.4,6.74,4.65
vgg13,154.03,830.996,128,224,11.31,12.25,133.05
vgg13_bn,144.39,886.483,128,224,11.33,12.25,133.05
vgg16,123.7,1034.687,128,224,15.47,13.56,138.36
vgg16_bn,117.06,1093.467,128,224,15.5,13.56,138.37
vgg19,103.71,1234.193,128,224,19.63,14.86,143.67
vgg19_bn,98.59,1298.317,128,224,19.66,14.86,143.68
Loading

0 comments on commit adae90b

Please sign in to comment.