Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

FIX: typo and enhance Geogebra plots #291

Merged
merged 2 commits into from
Sep 5, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions docs/report/033.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@
":::{card} PWA101: Amplitude analysis with Python basics\n",
"TR-033\n",
"^^^\n",
"This document introduces amplitude analysis, and specifically the technique called Partial Wave Analysis (PWA), by demonstrating its application to a specific reaction channel and amplitude model. The tutorial uses basic Python programming and libraries (e.g. [`numpy`](https://numpy.org/doc/stable), [`scipy`](https://docs.scipy.org/doc/scipy), etc.) are used to illustrate the more fundamental steps of PWA in hadron physics.\n",
"This tutorial introduces amplitude analysis, and specifically the technique called Partial Wave Analysis (PWA), by demonstrating its application to a specific reaction channel and amplitude model. Basic Python programming and libraries (e.g. [`numpy`](https://numpy.org/doc/stable), [`scipy`](https://docs.scipy.org/doc/scipy), etc.) are used to illustrate the more fundamental steps of PWA in hadron physics.\n",
"+++\n",
"✅ [ComPWA/RUB-EP1-AG#93](https://github.com/ComPWA/RUB-EP1-AG/issues/93), [compwa.github.io#217](https://github.com/ComPWA/compwa.github.io/pull/217)\n",
":::\n",
Expand Down Expand Up @@ -1314,7 +1314,7 @@
"| CM frame | Helicity frame |\n",
"|---|---|\n",
"| Before boosting | After boosting into the $p_1+p_2$ subsystem |\n",
"| <iframe src=\"https://www.geogebra.org/3d/dgjn83pb?embed\" width=\"100%\" height=\"400\" frameborder=\"0\"></iframe> | <iframe src=\"https://www.geogebra.org/3d/tv5kr8pp?embed\" width=\"100%\" height=\"400\" frameborder=\"0\"></iframe> |\n",
"| <iframe src=\"https://www.geogebra.org/material/iframe/id/dgjn83pb/stb/false/sdz/true/sri/true\" width=\"100%\" height=\"100%\" style=\"aspect-ratio:1.6;border:0px;\"></iframe> | <iframe src=\"https://www.geogebra.org/material/iframe/id/tv5kr8pp/stb/false/sdz/true/sri/true\" width=\"100%\" height=\"100%\" style=\"aspect-ratio:1.6;border:0px;\"></iframe> |\n",
"\n",
"The **production plane** (<font color=\"cyan\">cyan</font>) is defined by the momenta of the incoming particles that participate in the production of a particular state or particle. In the figure, we have $a+b \\to (R\\to 1+2)+3$ (subsystem $p_1+p_2$), meaning that the production plane is spanned by the momenta of $a$ (or $b$) and $1$.\n",
"\n",
Expand Down
Loading