-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add TensorWaves benchmark results (pytest) benchmark result for f7631d8
- Loading branch information
github-action-benchmark
committed
Jan 29, 2025
1 parent
968ab45
commit 58548cc
Showing
1 changed file
with
137 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,5 @@ | ||
window.BENCHMARK_DATA = { | ||
"lastUpdate": 1736794709722, | ||
"lastUpdate": 1738161312672, | ||
"repoUrl": "https://github.com/ComPWA/tensorwaves", | ||
"entries": { | ||
"TensorWaves benchmark results": [ | ||
|
@@ -19230,6 +19230,142 @@ window.BENCHMARK_DATA = { | |
"extra": "mean: 798.3872019999978 msec\nrounds: 5" | ||
} | ||
] | ||
}, | ||
{ | ||
"commit": { | ||
"author": { | ||
"email": "[email protected]", | ||
"name": "grayson-helmholz", | ||
"username": "grayson-helmholz" | ||
}, | ||
"committer": { | ||
"email": "[email protected]", | ||
"name": "GitHub", | ||
"username": "web-flow" | ||
}, | ||
"distinct": true, | ||
"id": "f7631d8e89df70bcd390095cdee054655d4eb92c", | ||
"message": "MAINT: update lock files (#539)\n\n* DX: run tests with `uv-venv-lock-runner`\n* FIX: set correct ignore patterns for `sphinx-autobuild`\n* MAINT: remove dynamic version from `uv.lock`\n* MAINT: update developer configuration\n* MAINT: update developer environment\n* MAINT: update links to Nvidia", | ||
"timestamp": "2025-01-29T15:32:59+01:00", | ||
"tree_id": "859d464df909e9bb9bf6ca1d09e191a8ee8b8606", | ||
"url": "https://github.com/ComPWA/tensorwaves/commit/f7631d8e89df70bcd390095cdee054655d4eb92c" | ||
}, | ||
"date": 1738161311971, | ||
"tool": "pytest", | ||
"benches": [ | ||
{ | ||
"name": "benchmarks/ampform.py::TestJPsiToGammaPiPi::test_data[10000-jax]", | ||
"value": 0.39676171074535466, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0", | ||
"extra": "mean: 2.520404496999987 sec\nrounds: 1" | ||
}, | ||
{ | ||
"name": "benchmarks/ampform.py::TestJPsiToGammaPiPi::test_data[10000-numpy]", | ||
"value": 0.33825378611885776, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0", | ||
"extra": "mean: 2.9563601089999736 sec\nrounds: 1" | ||
}, | ||
{ | ||
"name": "benchmarks/ampform.py::TestJPsiToGammaPiPi::test_data[10000-tf]", | ||
"value": 0.33886196777018945, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0", | ||
"extra": "mean: 2.951054101999972 sec\nrounds: 1" | ||
}, | ||
{ | ||
"name": "benchmarks/ampform.py::TestJPsiToGammaPiPi::test_fit[10000-jax]", | ||
"value": 0.9682091788665913, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0", | ||
"extra": "mean: 1.0328346620000275 sec\nrounds: 1" | ||
}, | ||
{ | ||
"name": "benchmarks/expression.py::test_data[3000-jax]", | ||
"value": 29.63331696545207, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.0001973956624446484", | ||
"extra": "mean: 33.74580041666775 msec\nrounds: 12" | ||
}, | ||
{ | ||
"name": "benchmarks/expression.py::test_data[3000-numpy]", | ||
"value": 187.73644126661407, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.00010636221140838549", | ||
"extra": "mean: 5.326616363095161 msec\nrounds: 168" | ||
}, | ||
{ | ||
"name": "benchmarks/expression.py::test_data[3000-numba]", | ||
"value": 7.037859923951223, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.00400371888651265", | ||
"extra": "mean: 142.0886477999943 msec\nrounds: 5" | ||
}, | ||
{ | ||
"name": "benchmarks/expression.py::test_data[3000-tf]", | ||
"value": 93.06817654453087, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.0003428004991615808", | ||
"extra": "mean: 10.744811353658832 msec\nrounds: 82" | ||
}, | ||
{ | ||
"name": "benchmarks/expression.py::test_fit[1000-Minuit2-jax]", | ||
"value": 8.914356849834832, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.0003557978390481418", | ||
"extra": "mean: 112.17859199999698 msec\nrounds: 6" | ||
}, | ||
{ | ||
"name": "benchmarks/expression.py::test_fit[1000-Minuit2-numpy]", | ||
"value": 10.067735209953321, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.0011521889990801053", | ||
"extra": "mean: 99.32720509090908 msec\nrounds: 11" | ||
}, | ||
{ | ||
"name": "benchmarks/expression.py::test_fit[1000-Minuit2-numba]", | ||
"value": 10.033386092221622, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.002385143749009219", | ||
"extra": "mean: 99.66725000000244 msec\nrounds: 11" | ||
}, | ||
{ | ||
"name": "benchmarks/expression.py::test_fit[1000-Minuit2-tf]", | ||
"value": 1.0972200974250323, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.0025470922681992843", | ||
"extra": "mean: 911.3941699999941 msec\nrounds: 5" | ||
}, | ||
{ | ||
"name": "benchmarks/expression.py::test_fit[1000-ScipyMinimizer-jax]", | ||
"value": 8.818885423014027, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.0009889991261417196", | ||
"extra": "mean: 113.3930141999997 msec\nrounds: 5" | ||
}, | ||
{ | ||
"name": "benchmarks/expression.py::test_fit[1000-ScipyMinimizer-numpy]", | ||
"value": 9.618056400474781, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.00024128469262106996", | ||
"extra": "mean: 103.97111000000336 msec\nrounds: 10" | ||
}, | ||
{ | ||
"name": "benchmarks/expression.py::test_fit[1000-ScipyMinimizer-numba]", | ||
"value": 9.538596392202457, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.002803500192508061", | ||
"extra": "mean: 104.83722749999913 msec\nrounds: 10" | ||
}, | ||
{ | ||
"name": "benchmarks/expression.py::test_fit[1000-ScipyMinimizer-tf]", | ||
"value": 1.2216567166493884, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.0033640556334182817", | ||
"extra": "mean: 818.5605549999991 msec\nrounds: 5" | ||
} | ||
] | ||
} | ||
] | ||
} | ||
|