-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
223 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,223 @@ | ||
import os | ||
import numpy as np | ||
import pandas as pd | ||
import deeptools.countReadsPerBin as crpb | ||
import matplotlib | ||
import matplotlib.pyplot as plt | ||
import pysam | ||
import scipy.stats | ||
from statsmodels.stats.multitest import multipletests | ||
from pathlib import Path | ||
|
||
|
||
|
||
working_dir = "/omics/groups/OE0219/internal/Etienne/Projects/SRSF2/cutandrun/analysis/2022-11-09" | ||
Path(working_dir).mkdir(parents=True, exist_ok=True) | ||
windowsize_TSS = 500 | ||
chromosomes = ["chr"+str(x) for x in range(1,23)] + ["chrX","chrY"] | ||
|
||
# Select downregulated genes (or upregulated, or background) | ||
chromosomes = [str(x) for x in range(1,23)] + ["X","Y"] | ||
#df = pd.read_csv("/omics/groups/OE0219/internal/Etienne/Projects/SRSF2/cutandrun/analysis/final_48kd_ctr_annotation.txt",sep="\t") | ||
df = pd.read_csv("/omics/groups/OE0219/internal/Etienne/Projects/SRSF2/cutandrun/analysis/res_TcRC_60min_kd_ctr.txt",sep=",") | ||
df.columns = ["gene_name","baseMean","log2FoldChange","lfcSE","stat","pvalue","padj"] | ||
df = df.loc[~df["pvalue"].isnull(),] | ||
df = df.loc[df["baseMean"]>5,:] | ||
df["padj"] = multipletests(df["pvalue"],alpha=0.05,method="fdr_bh")[1] | ||
|
||
df_downregulated = df.loc[ (df["padj"]<0.05) & (df["log2FoldChange"]<0),:] | ||
genes_selected_downregulated = list(df_downregulated["gene_name"]) | ||
|
||
df_upregulated = df.loc[ (df["padj"]<0.05) & (df["log2FoldChange"]>0),:] | ||
genes_selected_upregulated = list(df_upregulated["gene_name"]) | ||
|
||
df_background = df.loc[ (df["baseMean"]>5),:] # (df["padj"]>0.20) & | ||
genes_selected_background = list(df_background["gene_name"]) | ||
|
||
# Find canonical transcripts for the selected genes | ||
#transcripts_ids = set() | ||
canonicalTranscripts2gene_downregulated = {} | ||
canonicalTranscripts2gene_upregulated = {} | ||
canonicalTranscripts2gene_background = {} | ||
df_GRCh38 = pd.read_csv("/omics/groups/OE0219/internal/Etienne/data/reference/RNA/Transcripts_GRCh38.tsv",sep="\t") | ||
for i in range(df_GRCh38.shape[0]): | ||
if df_GRCh38.loc[i,"Ensembl Canonical"] == 1.0: | ||
if df_GRCh38.loc[i,"Gene name"] in genes_selected_downregulated and not df_GRCh38.loc[i,"Gene name"] in canonicalTranscripts2gene_downregulated.values(): | ||
canonicalTranscripts2gene_downregulated[df_GRCh38.loc[i,"Transcript stable ID"]] = df_GRCh38.loc[i,"Gene name"] | ||
if df_GRCh38.loc[i,"Gene name"] in genes_selected_upregulated and not df_GRCh38.loc[i,"Gene name"] in canonicalTranscripts2gene_upregulated.values(): | ||
canonicalTranscripts2gene_upregulated[df_GRCh38.loc[i,"Transcript stable ID"]] = df_GRCh38.loc[i,"Gene name"] | ||
if df_GRCh38.loc[i,"Gene name"] in genes_selected_background and not df_GRCh38.loc[i,"Gene name"] in canonicalTranscripts2gene_background.values(): | ||
canonicalTranscripts2gene_background[df_GRCh38.loc[i,"Transcript stable ID"]] = df_GRCh38.loc[i,"Gene name"] | ||
|
||
df_GRCh37 = pd.read_csv("/omics/groups/OE0219/internal/Etienne/data/reference/RNA/Transcripts_GRCh37.tsv",sep="\t") | ||
df_GRCh37.sort_values(by=["Chromosome/scaffold name","Transcript start (bp)"],inplace=True) | ||
df_GRCh37.reset_index(inplace=True) | ||
|
||
with open(os.path.join(working_dir,"selected_genes_downregulated.bed"),"w") as outfile: | ||
for i in range(df_GRCh37.shape[0]): | ||
if df_GRCh37.loc[i,"Transcript stable ID"] in canonicalTranscripts2gene_downregulated and df_GRCh37.loc[i,"Chromosome/scaffold name"] in chromosomes: | ||
strand = "+" if df_GRCh37.loc[i,"Strand"] >0 else "-" | ||
tmp = outfile.write("\t".join(["chr"+str(df_GRCh37.loc[i,"Chromosome/scaffold name"]),str(df_GRCh37.loc[i,"Transcript start (bp)"]),str(df_GRCh37.loc[i,"Transcript end (bp)"]),canonicalTranscripts2gene_downregulated[df_GRCh37.loc[i,"Transcript stable ID"]],"0",strand])+"\n") | ||
|
||
with open(os.path.join(working_dir,"selected_genes_upregulated.bed"),"w") as outfile: | ||
for i in range(df_GRCh37.shape[0]): | ||
if df_GRCh37.loc[i,"Transcript stable ID"] in canonicalTranscripts2gene_upregulated and df_GRCh37.loc[i,"Chromosome/scaffold name"] in chromosomes: | ||
strand = "+" if df_GRCh37.loc[i,"Strand"] >0 else "-" | ||
tmp = outfile.write("\t".join(["chr"+str(df_GRCh37.loc[i,"Chromosome/scaffold name"]),str(df_GRCh37.loc[i,"Transcript start (bp)"]),str(df_GRCh37.loc[i,"Transcript end (bp)"]),canonicalTranscripts2gene_upregulated[df_GRCh37.loc[i,"Transcript stable ID"]],"0",strand])+"\n") | ||
|
||
with open(os.path.join(working_dir,"selected_genes_background.bed"),"w") as outfile: | ||
for i in range(df_GRCh37.shape[0]): | ||
if df_GRCh37.loc[i,"Transcript stable ID"] in canonicalTranscripts2gene_background and df_GRCh37.loc[i,"Chromosome/scaffold name"] in chromosomes: | ||
strand = "+" if df_GRCh37.loc[i,"Strand"] >0 else "-" | ||
tmp = outfile.write("\t".join(["chr"+str(df_GRCh37.loc[i,"Chromosome/scaffold name"]),str(df_GRCh37.loc[i,"Transcript start (bp)"]),str(df_GRCh37.loc[i,"Transcript end (bp)"]),canonicalTranscripts2gene_background[df_GRCh37.loc[i,"Transcript stable ID"]],"0",strand])+"\n") | ||
|
||
|
||
|
||
|
||
# Get dataframe of pausing indices transcripts x sample | ||
antibody = "phospho-Rpb1-ser5" | ||
replicates = ["1","2","3"] | ||
pipeline_dir = "/omics/groups/OE0219/internal/Etienne/Projects/SRSF2/cutandrun/pipeline2_RPKM/" | ||
|
||
#antibody = "RPB1" | ||
#replicates = ["3","4","5"] | ||
#pipeline_dir = "/omics/groups/OE0219/internal/Etienne/Projects/SRSF2/cutandrun/pipeline_RPKM/" | ||
|
||
sample2bam={} | ||
sample2pysam={} | ||
sample2counter={} | ||
for condition in ["KD48h","control"]: | ||
for replicate in replicates: | ||
sample = antibody+"_"+condition+"_R"+replicate | ||
sample2bam[sample] = pipeline_dir+"02_alignment/bowtie2/target/"+condition+"-"+antibody+"_R"+replicate+".target.markdup.bam" | ||
sample2pysam[sample] = pysam.AlignmentFile(sample2bam[sample]) | ||
sample2counter[sample] = crpb.CountReadsPerBin([sample2bam[sample]], binLength=100, stepSize=100) | ||
|
||
chromosomes = ["chr"+str(x) for x in range(1,23)] + ["chrX","chrY"] | ||
|
||
def compute_pausing_indices(genes_file,outfile): | ||
# We define the pausing index as the number of reads aligned to the TSS (+/- 250bp) divided by the number of reads aligned to the gene body. | ||
d={"gene":[]} | ||
for sample in sample2bam: | ||
d[sample] = [] | ||
with open(genes_file,"r") as infile: | ||
for line in infile: | ||
linesplit= line.rstrip("\n").split("\t") | ||
chr = linesplit[0] | ||
if not chr in chromosomes: continue | ||
start = int(linesplit[1]) | ||
end = int(linesplit[2]) | ||
gene = linesplit[3] | ||
strand = linesplit[5] | ||
if strand=="+": | ||
TSS = start | ||
else: | ||
TSS = end | ||
d["gene"].append(gene) | ||
for condition in ["KD48h","control"]: | ||
for replicate in replicates: | ||
sample = antibody+"_"+condition+"_R"+replicate | ||
coverage_TSS = 1+sample2counter[sample].get_coverage_of_region(sample2pysam[sample],chr, [(TSS-windowsize_TSS//2, TSS+windowsize_TSS//2)])[0] | ||
coverage_genebody = 1+sample2counter[sample].get_coverage_of_region(sample2pysam[sample],chr, [(start -windowsize_TSS//2 , end +windowsize_TSS//2)])[0] | ||
ratio = coverage_TSS / coverage_genebody | ||
d[sample].append(ratio) | ||
df_pausing_indices = pd.DataFrame(d) | ||
df_pausing_indices.to_csv(outfile,sep="\t",index=False) | ||
|
||
compute_pausing_indices(os.path.join(working_dir,"selected_genes_downregulated.bed"),os.path.join(working_dir,antibody+"_pausing-indices_downregulated.tsv")) | ||
compute_pausing_indices(os.path.join(working_dir,"selected_genes_upregulated.bed"),os.path.join(working_dir,antibody+"_pausing-indices_upregulated.tsv")) | ||
compute_pausing_indices(os.path.join(working_dir,"selected_genes_background.bed"),os.path.join(working_dir,antibody+"_pausing-indices_background.tsv")) | ||
|
||
|
||
|
||
####################################################### | ||
# Compute pvalues for differences in pausing index between the two conditions | ||
|
||
for type in ["downregulated","upregulated","background"]: | ||
print(type) | ||
df_pausing_indices = pd.read_csv(os.path.join(working_dir,antibody+"_pausing-indices_"+type+".tsv"),sep="\t",index_col = "gene") | ||
conditions = ["KD48h","control"] | ||
|
||
|
||
# For each gene, perform a t-test between the pausing index of 2 conditions (requires several replicates per condition). | ||
# Then, combine the pvalues of all the genes into a single pvalue | ||
|
||
# Alternatively, for each gene, compute the log ratio of the pausing index between the two conditions, and then perform a t-test for all genes | ||
pvalues = [] | ||
log_ratios_conditions=[] | ||
diff_ratios_conditions=[] | ||
|
||
for gene in df_pausing_indices.index: | ||
# Collect the pausing indices for this gene, for each of the 2 conditions | ||
pausing_indices={} | ||
for condition in conditions: | ||
pausing_indices[condition]=[] | ||
for replicate in replicates: | ||
pausing_indices[condition].append(df_pausing_indices.loc[gene,antibody+"_"+condition+"_R"+str(replicate)]) | ||
# t-test between the two conditions | ||
pvalue = scipy.stats.ttest_ind(pausing_indices[conditions[0]],pausing_indices[conditions[1]])[1] # ,alternative="greater" | ||
if pvalue == pvalue: | ||
pvalues.append(pvalue) | ||
|
||
# log ratio between the 2 conditions | ||
log_ratios_conditions.append(np.log(np.mean(pausing_indices[conditions[0]]) / np.mean(pausing_indices[conditions[1]]))) | ||
diff_ratios_conditions.append(np.mean(pausing_indices[conditions[0]]) - np.mean(pausing_indices[conditions[1]])) | ||
|
||
ratios_condition = {} | ||
for condition in conditions: | ||
ratios_condition[condition] = [] | ||
for replicate in replicates: | ||
ratios_replicate = [] | ||
for gene in df_pausing_indices.index: | ||
ratios_replicate.append(df_pausing_indices.loc[gene,antibody+"_"+condition+"_R"+str(replicate)]) | ||
ratios_condition[condition].append(np.mean(ratios_replicate)) | ||
|
||
pvalue_samples = scipy.stats.ttest_ind(ratios_condition[conditions[0]],ratios_condition[conditions[1]])[1] | ||
print(ratios_condition) | ||
print("p value:" +str(pvalue_samples)) | ||
|
||
# use Fisher's method to combine the pvalues. | ||
print(scipy.stats.combine_pvalues(pvalues)) | ||
pvalue_combined = scipy.stats.combine_pvalues(pvalues)[1] | ||
print("pvalue combined: "+str(pvalue_combined)) | ||
|
||
|
||
# t-test between the two conditions | ||
pvalue2 = scipy.stats.ttest_1samp(diff_ratios_conditions,0)[1] # alternative="greater" | ||
print("pvalue diff: "+str(pvalue2)) | ||
pvalue3 = scipy.stats.ttest_1samp(log_ratios_conditions,0)[1] # alternative="greater" | ||
print("pvalue log ratio: "+str(pvalue3)) | ||
|
||
matplotlib.rcParams.update({'font.size': 20}) | ||
#plt.hist(log_ratios_conditions,bins=np.arange(-1.6,1.6,0.1),density=False) | ||
plt.hist(diff_ratios_conditions,bins=np.arange(-0.2,0.2,0.01),density=False) | ||
plt.xlabel("Difference of pausing index between KD and control") | ||
plt.ylabel("Number of transcripts") | ||
plt.title("pvalue: "+ "{:.2E}".format(pvalue2)) | ||
plt.savefig(os.path.join(working_dir,antibody+"_ttest_"+type+".svg"),bbox_inches="tight") | ||
plt.cla() | ||
plt.clf() | ||
plt.close('all') | ||
series_diff_ratio = pd.Series(diff_ratios_conditions,index=df_pausing_indices.index) | ||
series_diff_ratio.to_csv(os.path.join(working_dir,antibody+"_diff_pausing-indices_"+type+".tsv"),sep="\t") | ||
|
||
matplotlib.rcParams.update({'font.size': 20}) | ||
#plt.hist(log_ratios_conditions,bins=np.arange(-1.6,1.6,0.1),density=False) | ||
plt.hist(log_ratios_conditions,bins=np.arange(-0.2,0.2,0.01),density=False) | ||
plt.xlabel("Log ratio of pausing index between KD and control") | ||
plt.ylabel("Number of transcripts") | ||
plt.title("pvalue: "+ "{:.2E}".format(pvalue3)) | ||
plt.savefig(os.path.join(working_dir,antibody+"_ttestLogRatio_"+type+".svg"),bbox_inches="tight") | ||
plt.cla() | ||
plt.clf() | ||
plt.close('all') | ||
|
||
|
||
plt.hist(pvalues) | ||
plt.xlabel("pvalue") | ||
plt.ylabel("Number of transcripts") | ||
plt.title("Combined pvalue:" + "{:.2E}".format(pvalue_combined)) | ||
plt.savefig(os.path.join(working_dir,antibody+"_pvalues_"+type+".svg"),bbox_inches="tight") | ||
plt.cla() | ||
plt.clf() | ||
plt.close('all') |