Skip to content

Commit

Permalink
Merge pull request #206 from CosmiQ/dev
Browse files Browse the repository at this point in the history
Version bump to 0.1.2
  • Loading branch information
nrweir authored Jul 18, 2019
2 parents d0c4592 + 5c01053 commit eb2ce05
Show file tree
Hide file tree
Showing 151 changed files with 3,237 additions and 354 deletions.
2 changes: 2 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -120,3 +120,5 @@ dmypy.json

# Project-specific
sandbox.ipynb
solaris/nets/weights
model_weights
9 changes: 6 additions & 3 deletions .travis.yml
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
language: python
sudo: required
dist: xenial
cache: false
python:
- "3.6"
- "3.7"
Expand All @@ -19,20 +20,22 @@ install:
- export PATH="$HOME/miniconda/bin:$PATH"
- hash -r
- conda config --set always_yes yes --set changeps1 no
- conda update -q conda
# Useful for debugging any issues with conda
- conda update conda -c conda-forge
- conda info -a
# switch python version spec in environment.yml to match TRAVIS_PYTHON_VERSION
# annoying workaround to `conda env create python=$TRAVIS_PYTHON_VERSION` not working
- sed -i -E 's/(python=)(.*)/\1'$TRAVIS_PYTHON_VERSION'/' ./environment.yml
- conda env create -n solaris -f environment.yml
- conda list -n solaris
- source activate solaris
- python --version
- pip install -q -e .[test]
- pip install codecov pytest pytest-cov
- conda install pytest=4.6.2 -c conda-forge
- pip install codecov pytest-cov
# command to run tests
script:
- pytest --cov=./
- python -m pytest --cov=./

after_success:
- codecov
1 change: 1 addition & 0 deletions docs/_templates/custom_sidebar.html
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
<ul class="globaltoc">{{ toctree(collapse=False,includehidden=theme_globaltoc_includehidden|tobool) }}</ul>
2 changes: 2 additions & 0 deletions docs/api/index.rst
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
.. _api_index:

.. title:: API reference contents

###################
Expand Down
6 changes: 3 additions & 3 deletions docs/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,8 +24,8 @@
copyright = u'2018-{}, CosmiQ Works: an IQT Lab'.format(time.strftime("%Y"))

# The full version, including alpha/beta/rc tags
release = '0.1.1'
version = '0.1.1'
release = '0.1.2'
version = '0.1.2'

# -- General configuration ---------------------------------------------------

Expand Down Expand Up @@ -128,7 +128,7 @@ def setup(app):
# default: ``['localtoc.html', 'relations.html', 'sourcelink.html',
# 'searchbox.html']``.
#
html_sidebars = {'**': ['localtoc.html', 'sourcelink.html', 'searchbox.html']}
html_sidebars = {'**': ['custom_sidebar.html', 'sourcelink.html', 'searchbox.html']}

# -- Options for HTMLHelp output ---------------------------------------------

Expand Down
10 changes: 6 additions & 4 deletions docs/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@ An open source machine learning pipeline for geospatial imagery

installation
intro
pretrained_models
api/index
tutorials/index

Expand All @@ -31,13 +32,14 @@ An open source machine learning pipeline for geospatial imagery

User Guide
==========
* `What is solaris? <intro.html>`_
* `Installation <installation.html>`_
* `Tutorials and recipes <tutorials/index.html>`_
* :ref:`What is solaris? <intro>`
* :ref:`Installation <installation>`
* :ref:`Pretrained models available in solaris <pretrained_models>`
* :ref:`Tutorials and recipes <tutorials_index>`

Reference
=========
* `API reference <api/index>`_
* :ref:`API reference <api_index>`

Index
=====
Expand Down
2 changes: 2 additions & 0 deletions docs/installation.rst
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
.. _installation:

######################
Installing ``solaris``
######################
Expand Down
2 changes: 2 additions & 0 deletions docs/intro.rst
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
.. _intro:


##############################
An introduction to ``solaris``
Expand Down
62 changes: 62 additions & 0 deletions docs/pretrained_models.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
.. _pretrained_models:

##########################################
Pretrained models available in ``solaris``
##########################################

``solaris`` provides access to a number of pre-trained models from
`the SpaceNet challenges <https://spacenet.ai>`_. See the table below for a
summary. Note that the model name in the first column should be used as the
``"model_name"`` argument in
`the config file <tutorials/notebooks/creating_the_yaml_config_file.html>`_ if you wish to use that model with ``solaris``. Note that we re-trained the
competitors' models for compatibility with ``solaris`` and the training parameters,
inputs, and performance may vary slightly from their original models.

Model details
=============

+------------------------------------+---------------------+-----------------------+----------------+-------------+-------------+---------------------------------+---------------------------------------+
| Model name | Model type | Model details | # Parameters | Input shape |Output shape | Config file | Weights file |
+====================================+=====================+=======================+================+=============+=============+=================================+=======================================+
| xdxd_spacenet4 | Segmentation UNet | Encoder: VGG16 | 29.3M | 3x512x512 | 1x512x512 | `link <XDXDconfig_>`_ | `link <XDXDweights_>`_ (117 MB) |
+------------------------------------+---------------------+-----------------------+----------------+-------------+-------------+---------------------------------+---------------------------------------+
| selimsef_spacenet4_resnet34unet | Segmentation UNet | Encoder: ResNet-34 | 30.0M | 4x416x416 | 3x416x416 | `link <ssresnet34config_>`_ | `link <ssresnet34weights_>`_ (120 MB) |
+------------------------------------+---------------------+-----------------------+----------------+-------------+-------------+---------------------------------+---------------------------------------+
| selimsef_spacenet4_densenet121unet | Segmentation UNet | Encoder: DenseNet-121 | 15.6M | 3x384x384 | 3x384x384 | `link <ssdense121config_>`_ | `link <ssdense121weights_>`_ (63 MB) |
+------------------------------------+---------------------+-----------------------+----------------+-------------+-------------+---------------------------------+---------------------------------------+
| selimsef_spacenet4_densenet161unet | Segmentation UNet | Encoder: DenseNet-161 | 41.1M | 3x384x384 | 3x384x384 | `link <ssdense161config_>`_ | `link <ssdense161weights_>`_ (158 MB) |
+------------------------------------+---------------------+-----------------------+----------------+-------------+-------------+---------------------------------+---------------------------------------+

Training details
================

Below is a summary of the training hyperparameters for each model. For image
pre-processing and augmentation pipelines see the config files linked above.
*Note that our hyperparameters may differ from the competitors' original values.*
See `their solution descriptions <https://github.com/spacenetchallenge>`_ for
more on their implementations.

+------------------------------------+-------------------------+-------------------+---------------+------------------------+-----------------+------------+-----------------+---------------------+
| Model name | Loss function | Optimizer | Learning Rate | Training input | Training mask | Batch size | Training Epochs | Pre-trained weights |
+====================================+=========================+===================+===============+========================+=================+============+=================+=====================+
| xdxd_spacenet4 | BCE + | Adam | 1e-4 | SpaceNet 4 | Footprints only | 12 | 60 | None |
| | Jaccard (4:1) | default params | with decay | Pan-sharpened RGB | | | | |
+------------------------------------+-------------------------+-------------------+---------------+------------------------+-----------------+------------+-----------------+---------------------+
| selimsef_spacenet4_resnet34unet | Focal + Dice | AdamW | 2e-4 | SpaceNet 4 | 3-channel (FP, | 42 | 70 | ImageNet (encoder |
| | (1:1) | 1e-3 weight decay | with decay | Pan-sharpened RGB+NIR | (edge, contact) | | | only) |
+------------------------------------+-------------------------+-------------------+---------------+------------------------+-----------------+------------+-----------------+---------------------+
| selimsef_spacenet4_densenet121unet | Focal + Dice | AdamW | 2e-4 | SpaceNet 4 | 3-channel (FP, | 32 | 70 | ImageNet (encoder |
| | (1:1) | 1e-3 weight decay | with decay | Pan-sharpened RGB | (edge, contact) | | | only) |
+------------------------------------+-------------------------+-------------------+---------------+------------------------+-----------------+------------+-----------------+---------------------+
| selimsef_spacenet4_densenet161unet | Focal + Dice | AdamW | 2e-4 | SpaceNet 4 | 3-channel (FP, | 20 | 60 | ImageNet (encoder |
| | (1:1) | 1e-3 weight decay | with decay | Pan-sharpened RGB | (edge, contact) | | | only) |
+------------------------------------+-------------------------+-------------------+---------------+------------------------+-----------------+------------+-----------------+---------------------+

.. _XDXDconfig: https://github.com/CosmiQ/solaris/blob/master/solaris/nets/configs/xdxd_spacenet4.yml
.. _ssresnet34config: https://github.com/CosmiQ/solaris/blob/master/solaris/nets/configs/selimsef_resnet34unet_spacenet4.yml
.. _ssdense121config: https://github.com/CosmiQ/solaris/blob/master/solaris/nets/configs/selimsef_densenet121unet_spacenet4.yml
.. _ssdense161config: https://github.com/CosmiQ/solaris/blob/master/solaris/nets/configs/selimsef_densenet161unet_spacenet4.yml
.. _XDXDweights: https://s3.amazonaws.com/spacenet-dataset/spacenet-model-weights/spacenet-4/xdxd_spacenet4_solaris_weights.pth
.. _ssresnet34weights: https://s3.amazonaws.com/spacenet-dataset/spacenet-model-weights/spacenet-4/selimsef_spacenet4_resnet34unet_solaris_weights.pth
.. _ssdense121weights: https://s3.amazonaws.com/spacenet-dataset/spacenet-model-weights/spacenet-4/selimsef_spacenet4_densenet121unet_solaris_weights.pth
.. _ssdense161weights: https://s3.amazonaws.com/spacenet-dataset/spacenet-model-weights/spacenet-4/selimsef_spacenet4_densenet161unet_solaris_weights.pth
13 changes: 0 additions & 13 deletions docs/tutorials/cli_eval.rst

This file was deleted.

12 changes: 7 additions & 5 deletions docs/tutorials/index.rst
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
.. _tutorials_index:

##############################
Solaris Tutorials and Cookbook
##############################
Expand Down Expand Up @@ -40,7 +42,7 @@ on creating configuration files and running the CLI can be found below.
* `Creating reference files to help solaris find your imagery <notebooks/creating_im_reference_csvs.ipynb>`_
* `Creating training masks with the solaris CLI <notebooks/cli_mask_creation.ipynb>`_
* `Running a full deep learning pipeline using the solaris CLI <notebooks/cli_ml_pipeline.ipynb>`_
* :doc:`Evaluating prediction quality on SpaceNet data with the solaris CLI <cli_eval>`
* `Evaluating prediction quality on SpaceNet data with the solaris CLI <notebooks/cli_spacenet_evaluation.ipynb>`_

If these relatively narrow use cases don't cover your needs, the ``solaris`` python
API can help!
Expand All @@ -62,10 +64,10 @@ the tutorials below.

* `Tiling imagery <notebooks/api_tiling_tutorial.ipynb>`_
* `Creating training masks <notebooks/api_masks_tutorial.ipynb>`_
* :doc:`Training a SpaceNet model <notebooks/api_training_spacenet>`
* :doc:`Inference with a pre-trained SpaceNet model <notebooks/api_inference_spacenet>`
* :doc:`Training a custom model <notebooks/api_training_custom>`
* :doc:`Converting pixel masks to vector labels <notebooks/api_mask_to_vector>`
* `Training a SpaceNet model <notebooks/api_training_spacenet.ipynb>`_
* `Inference with a pre-trained SpaceNet model <notebooks/api_inference_spacenet.ipynb>`_
* `Training a custom model <notebooks/api_training_custom.ipynb>`_
* `Converting pixel masks to vector labels <notebooks/api_mask_to_vector.ipynb>`_
* `Scoring your model's performance with the solaris Python API <notebooks/api_evaluation_tutorial.ipynb>`_


Expand Down
161 changes: 161 additions & 0 deletions docs/tutorials/notebooks/api_inference_spacenet.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,161 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Inferencing with included SpaceNet models and the `solaris` Python API\n",
"\n",
"We've included a number of SpaceNet models with `solaris`, including pre-trained model weights. You can find more information about your model choices [here](../pretrained_models.html) and the original competitors' code for the models [here](https://github.com/spacenetchallenge/spacenet_off_nadir_solutions).\n",
"\n",
"For this tutorial we'll walk through running inference with XD_XD's SpaceNet 4 model. We'll use the config file for that model, which you can find [here](https://github.com/CosmiQ/solaris/blob/master/solaris/nets/configs/xdxd_spacenet4.yml).\n",
"\n",
"You'll also need to [create the image reference files](creating_im_reference_csvs.ipynb) before you start.\n",
"\n",
"First, we'll load the configuration:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'model_name': 'xdxd_spacenet4',\n",
" 'model_path': None,\n",
" 'train': False,\n",
" 'infer': True,\n",
" 'pretrained': True,\n",
" 'nn_framework': 'torch',\n",
" 'batch_size': 12,\n",
" 'data_specs': {'width': 512,\n",
" 'height': 512,\n",
" 'image_type': 'zscore',\n",
" 'rescale': False,\n",
" 'rescale_minima': 'auto',\n",
" 'rescale_maxima': 'auto',\n",
" 'channels': 4,\n",
" 'label_type': 'mask',\n",
" 'is_categorical': False,\n",
" 'mask_channels': 1,\n",
" 'val_holdout_frac': 0.2,\n",
" 'data_workers': None},\n",
" 'training_data_csv': '/path/to/training_df.csv',\n",
" 'validation_data_csv': None,\n",
" 'inference_data_csv': '/path/to/test_df.csv',\n",
" 'training_augmentation': {'augmentations': {'DropChannel': {'idx': 3,\n",
" 'axis': 2},\n",
" 'HorizontalFlip': {'p': 0.5},\n",
" 'RandomRotate90': {'p': 0.5},\n",
" 'RandomCrop': {'height': 512, 'width': 512, 'p': 1.0},\n",
" 'Normalize': {'mean': [0.006479, 0.009328, 0.01123],\n",
" 'std': [0.004986, 0.004964, 0.00495],\n",
" 'max_pixel_value': 65535.0,\n",
" 'p': 1.0}},\n",
" 'p': 1.0,\n",
" 'shuffle': True},\n",
" 'validation_augmentation': {'augmentations': {'DropChannel': {'idx': 3,\n",
" 'axis': 2},\n",
" 'CenterCrop': {'height': 512, 'width': 512, 'p': 1.0},\n",
" 'Normalize': {'mean': [0.006479, 0.009328, 0.01123],\n",
" 'std': [0.004986, 0.004964, 0.00495],\n",
" 'max_pixel_value': 65535.0,\n",
" 'p': 1.0}},\n",
" 'p': 1.0},\n",
" 'inference_augmentation': {'augmentations': {'DropChannel': {'idx': 3,\n",
" 'axis': 2,\n",
" 'p': 1.0},\n",
" 'Normalize': {'mean': [0.006479, 0.009328, 0.01123],\n",
" 'std': [0.004986, 0.004964, 0.00495],\n",
" 'max_pixel_value': 65535.0,\n",
" 'p': 1.0}},\n",
" 'p': 1.0},\n",
" 'training': {'epochs': 60,\n",
" 'steps_per_epoch': None,\n",
" 'optimizer': 'Adam',\n",
" 'lr': 0.0001,\n",
" 'opt_args': None,\n",
" 'loss': {'bcewithlogits': None, 'jaccard': None},\n",
" 'loss_weights': {'bcewithlogits': 10, 'jaccard': 2.5},\n",
" 'metrics': {'training': None, 'validation': None},\n",
" 'checkpoint_frequency': 10,\n",
" 'callbacks': {'model_checkpoint': {'filepath': 'xdxd_best.pth',\n",
" 'monitor': 'val_loss'}},\n",
" 'model_dest_path': 'xdxd.pth',\n",
" 'verbose': True},\n",
" 'inference': {'window_step_size_x': None,\n",
" 'window_step_size_y': None,\n",
" 'output_dir': 'inference_out/'}}"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import solaris as sol\n",
"\n",
"config = sol.utils.config.parse('/Users/nweir/code/cosmiq_repos/solaris/solaris/nets/configs/xdxd_spacenet4.yml')\n",
"config"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As you can see, the YAML gets parsed into a set of nested dictionaries by `solaris`. Relevant pieces of that config then get read during training.\n",
"\n",
"Inferencing is _very_ similar to [training](api_training_spacenet.ipynb), with one major difference: you'll load in and pass the reference CSV for your inference dataset as an argument to the `Inferer` object. `solaris` is set up this way so that you can quickly and easily iterate through inference on a number of inputs without having to re-instantiate your inferencer each time."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"inferer = sol.nets.infer.Inferer(config)\n",
"inference_df = sol.nets.infer.get_infer_df(config)\n",
"inferer(inference_df)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The above commands will create prediction segmentation masks for each input image in the `output_dir` specified in your `config`. You can then [use sol.vector.mask.mask_to_poly_geojson to convert these predicted masks to vector-formatted geometries](api_mask_to_vector.ipynb)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "solaris",
"language": "python",
"name": "solaris"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Loading

0 comments on commit eb2ce05

Please sign in to comment.