Skip to content

Commit

Permalink
prelim (hard coded) downloader
Browse files Browse the repository at this point in the history
Pre-containerization python downloader code.  Everything hard-coded,
this will be converted to a containerized version.
  • Loading branch information
craigsteffen committed Jul 17, 2024
1 parent 5c82965 commit b10e84e
Showing 1 changed file with 259 additions and 0 deletions.
259 changes: 259 additions & 0 deletions downloader/CM_B_downloader.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,259 @@
import pika, sys, getopt, os
import json
import time
#import argparse

# configuration options; should come from environment variables or something
# this is the base of the working directory in the main (non-image) parallel
# file system
my_data_dir="/projects/bbym/shared/CDR_processing/pipeline_processing_003"

print("")
print("CriticaMAAS B-stage downloader")

download_queue="download"

# name preamble for processing queues, to make it easier for humans to see the
# function of the processing queues
process_queue_base = "process_"

# current list of models. Should come from an environment variable
#process_model_list = ["golden_muscat","flat_iceberg"]
process_model_list = ["golden_muscat","flat_iceberg","drab_volcano"]

# this is the actual running list of process queues that we will output
# requests to as we receive requests from CDR
#process_queue_list=[]

#rabbitmq_uri = "amqp://criticalmaas:keeNgoo1VahthuS4ii1r@rabbitmq.criticalmaas.software-dev.ncsa.illinois.edu:5672/shepard"
rabbitmq_uri = "amqp://ncsa:[email protected]:5672/%2F"

###############
# this is only here because the include isn't working

RMQ_username = "criticalmaas"
RMQ_password = "keeNgoo1VahthuS4ii1r"

#
##############

def set_up_RMQ(secrets_file):
global rabbitmq_uri
# global RMQ_username
# global RMQ_password

# if os.path.exists(secrets_file):
# execfile(filename)
# rabbitmq_uri = f"amqp://{RMQ_username}:{RMQ_password}@rabbitmq.criticalmaas.software-dev.ncsa.illinois.edu:5672/shepard"
return rabbitmq_uri


def CDR_download_callback(ch, method, properties, body):
# global my_log_dir
# global my_input_dir
# global my_output_dir
global my_data_dir

global rabbitmq_uri

global process_model_list

my_relative_filename=""

print("***Received:")
# catalog from CDR
CDR_catalog=json.loads(body)
print("got CDR catalog")
# print("map name:>>"+my_catalog['map_name']+"<<")

print("about to print catalog")
print(CDR_catalog)
print("finished catalog")

# ack here so the request gets removed from the stack before
# downloading; downloading can be minutes
ch.basic_ack(delivery_tag=method.delivery_tag)
# (FYI: putting the ack here doesn't help the timeout. We will still be suseptible
# to the heartbeat timeout if the download time exceeds 60 seconds

# download the file first
# (perhaps to be replaced by more python-y alternative from Rob)
tif_file_URL=CDR_catalog['cog_url']
maparea_file_URL=CDR_catalog['map_area']
CDR_model_list=CDR_catalog['models']
my_cog_id=CDR_catalog['cog_id']

# we split the target into intermediate directories to avoid pileup of tons
# of entities in a single directory; this is for scaling to a parallel
# filesystem with many man requests.
split_path=os.path.join(my_cog_id[0:2],my_cog_id[2:4])
extended_split_path=os.path.join(split_path,my_cog_id)
# this is where the data directory is mounted inside the image
external_data_base_dir_relative="data"
image_data_base_dir_absolute="/"+external_data_base_dir_relative

# the total path in the image where the data is reference from
# image_data_path=os.path.join(image_data_base_dir_absolute,extended_split_path)
external_data_path=os.path.join(external_data_base_dir_relative,extended_split_path)
tif_data_file_name=my_cog_id+".cog.tif"
maparea_data_file_name=my_cog_id+".cog_area.json"

# this is the location of the data file within the container, relative to its canonical folder (probably "/data")
# tif_filename_with_path=os.path.join(image_data_path,tif_data_file_name)
tif_filename_with_path=os.path.join(extended_split_path,tif_data_file_name)
maparea_filename_with_path=os.path.join(extended_split_path,maparea_data_file_name)

# external_data_filename_with_path=os.path.join(external_data_path,tif_data_file_name)

if maparea_file_URL:
# rm -f is because there's no clean way to tell wget to overwrite files; so this guarantees that the file is the newest downloaded one.
DL_command="cd "+my_data_dir+" ; mkdir -p "+external_data_path+" ; cd "+external_data_path+" ; rm -f "+maparea_data_file_name+" ; wget "+maparea_file_URL
print("about to run maparea download command: "+DL_command)
os.system(DL_command)
print("finished maparea download command")

if tif_file_URL:
DL_command="cd "+my_data_dir+" ; mkdir -p "+external_data_path+" ; cd "+external_data_path+" ; wget "+tif_file_URL
# check for file before downloading
fetch_file_path=os.path.join(my_data_dir,external_data_path);
fetch_file_components=tif_file_URL.split("/")
fetch_file_total_path=os.path.join(fetch_file_path,fetch_file_components[-1])
if os.path.isfile(fetch_file_total_path):
print(f"File >{fetch_file_total_path}< already exists! Skipping download.")
else:
print("about to run tif download command: "+DL_command)
os.system(DL_command)
print("finished tif download command")

# set up message; the message is only specific to the request file, not to
# the model, so we can set up a message to be sent to all of the processing
# queues.

# construct outgoing request catalog from incoming CDR catalog
# outgoing_message_dictionary={'request_type': "input_file" , 'input_file': CDR_catalog['cog_url'] , 'input_dir': my_input_dir, 'output_dir': my_output_dir, 'model': model_to_process, 'pipeline_image': my_pipeline_image, 'log_dir': my_log_dir}
# outgoing_message_dictionary={'request_type': "input_file" , 'input_file': CDR_catalog['cog_url'] , 'input_dir': my_input_dir, 'output_dir': my_output_dir, 'model': model_to_process, 'log_dir': my_log_dir, 'cog_id': CDR_catalog['cog_id'], 'metadata': CDR_catalog['metadata'], 'results': CDR_catalog['results'] }

# Pass whole catalog on, with additions to make the inference pipeline work
outgoing_message_dictionary=CDR_catalog;
outgoing_message_dictionary["image_filename"]=tif_filename_with_path
outgoing_message_dictionary["json_filename"]=maparea_filename_with_path

# then send out processing requests
# for model_to_process in process_model_list:
for model_to_process in CDR_model_list:
my_process_queue = process_queue_base+model_to_process

outgoing_message=json.dumps(outgoing_message_dictionary)
print("About to send process message:")
print(outgoing_message)
print("finished process message")
parameters = pika.URLParameters(rabbitmq_uri)
connection = pika.BlockingConnection(parameters)
channel = connection.channel()
channel.queue_declare(queue=my_process_queue, durable=True)
properties = pika.BasicProperties(delivery_mode=pika.DeliveryMode.Persistent)
channel.basic_publish(exchange='', routing_key=my_process_queue, body=outgoing_message, properties=properties)

# exit after a single message processing for testing
# sys.exit(2)
print("pausing")
time.sleep(2)



# result_file=input_dir+my_catalog['map_id']+".cog.tif"
# print("input dir:"+input_dir)
# print("resulting file: "+result_file)




def main(argv):
my_input_file=""
my_input_dir=""
my_output_dir=""
my_model_name=""

global my_log_dir
global my_pipeline_image
global download_queue

global process_queue_list
global process_model_list
global process_queue_base

# queue=queue_base+"_"+my_model_name

print("input file:>"+my_input_file+"<")
print("output directory:>"+my_output_dir+"<")
#print("using queue:>"+queue+"<")

# for each model_name in process_model_list:
# process_queue_list.append(process_queue_base+model_name)

# print("total processing queue list:")
# print(process_queue_list)
# print("finished printing processing queue list.")

# set up consumer
rabbitmq_uri=set_up_RMQ("~/.criticalmaas/secrets")

parameters = pika.URLParameters(rabbitmq_uri)
print('About to open rabbitMQ connection')
connection = pika.BlockingConnection(parameters)
print('RabbitMQ connection succeeded!')
channel = connection.channel()
channel.queue_declare(queue=download_queue, durable=True)
channel.basic_qos(prefetch_count=1)
channel.basic_consume(queue=download_queue, on_message_callback=CDR_download_callback, auto_ack=False)
# presumably this funtion takes us into a wait-process loop forever
print('start consumer loop')
channel.start_consuming()

# my_catalog=json.load(jfile)


# my_request_dictionary={'input': my_input , 'output': my_output}

# my_message = json.dumps(my_request_dictionary)

# print("extract from catalog: map_name="+my_catalog[0]["map_name"])

# shouldn't get here, but just in case
sys.exit(2)

my_outgoing_message_dictionary={'map_name': my_catalog[catalog_line]['map_name'] , 'map_id': my_catalog[catalog_line]['map_id'], 'cog_url': my_catalog[catalog_line]['cog_url']}


if len(my_input_file) > 0:
print("creating a single-file dictionary")
my_message_dictionary={'request_type': "input_file" , 'input_file': my_input_file , 'input_dir': my_input_dir, 'output_dir': my_output_dir, 'model': my_model_name, 'pipeline_image': my_pipeline_image, 'log_dir': my_log_dir}
else:
print("creating a directory (multi-file) dictionary")
my_message_dictionary={'request_type': "input_dir" , 'input_dir': my_input_dir , 'output_dir': my_output_dir, 'model': my_model_name, 'pipeline_image': my_pipeline_image, 'log_dir': my_log_dir}

my_message = json.dumps(my_message_dictionary)

parameters = pika.URLParameters(rabbitmq_uri)
connection = pika.BlockingConnection(parameters)
channel = connection.channel()
channel.queue_declare(queue=queue, durable=True)

properties = pika.BasicProperties(delivery_mode=pika.DeliveryMode.Persistent)
## message = "hello world"
channel.basic_publish(exchange='', routing_key=queue, body=my_message, properties=properties)

# here's the thing we're feeding (from 2024 April 10th):
# apptainer run --nv -B ./logs:/logs -B /projects/bbym/saxton/MockValData/:/data -B ./output:/output /projects/bbym/shared/continerExchange/criticalmaas-pipeline_latest.sif -v --log /logs/logs.latest --data /data/theFile.tif --legends /data/theFile.json
# added: --model flat_iceberg
#
# apptainer run --nv -B ./logs:/logs -B /projects/bbym/saxton/MockValData/:/data -B ./output:/output /projects/bbym



print("finished producer main()")


if __name__ == '__main__':
main(sys.argv[1:])

0 comments on commit b10e84e

Please sign in to comment.