Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Updated cfl number calculation #40

Closed
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
19 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
73 changes: 73 additions & 0 deletions examples/tree_1d_dgsem/elixir_advection_perk2_optimal_cfl.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@

using Convex, ECOS
using OrdinaryDiffEq
using Trixi

###############################################################################
# semidiscretization of the linear advection equation

advection_velocity = 1.0
equations = LinearScalarAdvectionEquation1D(advection_velocity)

# Create DG solver with polynomial degree = 3 and (local) Lax-Friedrichs/Rusanov flux as surface flux
solver = DGSEM(polydeg = 3, surface_flux = flux_lax_friedrichs)

coordinates_min = -1.0 # minimum coordinate
coordinates_max = 1.0 # maximum coordinate

# Create a uniformly refined mesh with periodic boundaries
mesh = TreeMesh(coordinates_min, coordinates_max,
initial_refinement_level = 4,
n_cells_max = 30_000) # set maximum capacity of tree data structure

# A semidiscretization collects data structures and functions for the spatial discretization
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition_convergence_test,
solver)

###############################################################################
# ODE solvers, callbacks etc.

# Create ODE problem with time span from 0.0 to 20.0
tspan = (0.0, 20.0)
ode = semidiscretize(semi, tspan);

# At the beginning of the main loop, the SummaryCallback prints a summary of the simulation setup
# and resets the timers
summary_callback = SummaryCallback()

# The AnalysisCallback allows to analyse the solution in regular intervals and prints the results
analysis_interval = 100
analysis_callback = AnalysisCallback(semi, interval = analysis_interval)

alive_callback = AliveCallback(alive_interval = analysis_interval)

save_solution = SaveSolutionCallback(dt = 0.1,
save_initial_solution = true,
save_final_solution = true,
solution_variables = cons2prim)

# Construct second order paired explicit Runge-Kutta method with 6 stages for given simulation setup.
# Pass `tspan` to calculate maximum time step allowed for the bisection algorithm used
# in calculating the polynomial coefficients in the ODE algorithm.
ode_algorithm = Trixi.PairedExplicitRK2(6, tspan, semi)
warisa-r marked this conversation as resolved.
Show resolved Hide resolved

# For Paired Explicit Runge-Kutta methods, we receive an optimized timestep for a given reference semidiscretization.
# To allow for e.g. adaptivity, we reverse-engineer the corresponding CFL number to make it available during the simulation.
cfl_number = Trixi.calculate_cfl(ode_algorithm, ode)
warisa-r marked this conversation as resolved.
Show resolved Hide resolved
stepsize_callback = StepsizeCallback(cfl = cfl_number)

# Create a CallbackSet to collect all callbacks such that they can be passed to the ODE solver
callbacks = CallbackSet(summary_callback,
alive_callback,
save_solution,
analysis_callback,
stepsize_callback)

###############################################################################
# run the simulation
sol = Trixi.solve(ode, ode_algorithm,
dt = 1.0, # Manual time step value, will be overwritten by the stepsize_callback when it is specified.
save_everystep = false, callback = callbacks);

# Print the timer summary
summary_callback()
41 changes: 32 additions & 9 deletions src/time_integration/paired_explicit_runge_kutta/methods_PERK2.jl
Original file line number Diff line number Diff line change
Expand Up @@ -68,15 +68,14 @@ function compute_PairedExplicitRK2_butcher_tableau(num_stages, eig_vals, tspan,
a_matrix[:, 1] -= A
a_matrix[:, 2] = A

return a_matrix, c
return a_matrix, c, dt_opt
end

# Compute the Butcher tableau for a paired explicit Runge-Kutta method order 2
# using provided monomial coefficients file
function compute_PairedExplicitRK2_butcher_tableau(num_stages,
base_path_monomial_coeffs::AbstractString,
bS, cS)

# c Vector form Butcher Tableau (defines timestep per stage)
c = zeros(num_stages)
for k in 2:num_stages
Expand Down Expand Up @@ -107,7 +106,7 @@ function compute_PairedExplicitRK2_butcher_tableau(num_stages,
end

@doc raw"""
PairedExplicitRK2(num_stages, base_path_monomial_coeffs::AbstractString,
PairedExplicitRK2(num_stages, base_path_monomial_coeffs::AbstractString, dt_opt,
bS = 1.0, cS = 0.5)
PairedExplicitRK2(num_stages, tspan, semi::AbstractSemidiscretization;
verbose = false, bS = 1.0, cS = 0.5)
Expand All @@ -118,6 +117,7 @@ end
- `base_path_monomial_coeffs` (`AbstractString`): Path to a file containing
monomial coefficients of the stability polynomial of PERK method.
The coefficients should be stored in a text file at `joinpath(base_path_monomial_coeffs, "gamma_$(num_stages).txt")` and separated by line breaks.
- `dt_opt` (`Float64`): Optimal time step size for the simulation.
- `tspan`: Time span of the simulation.
- `semi` (`AbstractSemidiscretization`): Semidiscretization setup.
- `eig_vals` (`Vector{ComplexF64}`): Eigenvalues of the Jacobian of the right-hand side (rhs) of the ODEProblem after the
Expand All @@ -144,16 +144,19 @@ mutable struct PairedExplicitRK2 <: AbstractPairedExplicitRKSingle
b1::Float64
bS::Float64
cS::Float64
dt_opt::Float64
end # struct PairedExplicitRK2

# Constructor that reads the coefficients from a file
function PairedExplicitRK2(num_stages, base_path_monomial_coeffs::AbstractString,
dt_opt,
bS = 1.0, cS = 0.5)
# If the user has the monomial coefficients, they also must have the optimal time step
a_matrix, c = compute_PairedExplicitRK2_butcher_tableau(num_stages,
base_path_monomial_coeffs,
bS, cS)

return PairedExplicitRK2(num_stages, a_matrix, c, 1 - bS, bS, cS)
return PairedExplicitRK2(num_stages, a_matrix, c, 1 - bS, bS, cS, dt_opt)
end

# Constructor that calculates the coefficients with polynomial optimizer from a
Expand All @@ -171,12 +174,12 @@ end
function PairedExplicitRK2(num_stages, tspan, eig_vals::Vector{ComplexF64};
verbose = false,
bS = 1.0, cS = 0.5)
a_matrix, c = compute_PairedExplicitRK2_butcher_tableau(num_stages,
eig_vals, tspan,
bS, cS;
verbose)
a_matrix, c, dt_opt = compute_PairedExplicitRK2_butcher_tableau(num_stages,
eig_vals, tspan,
bS, cS;
verbose)

return PairedExplicitRK2(num_stages, a_matrix, c, 1 - bS, bS, cS)
return PairedExplicitRK2(num_stages, a_matrix, c, 1 - bS, bS, cS, dt_opt)
end

# This struct is needed to fake https://github.com/SciML/OrdinaryDiffEq.jl/blob/0c2048a502101647ac35faabd80da8a5645beac7/src/integrators/type.jl#L1
Expand Down Expand Up @@ -232,6 +235,26 @@ mutable struct PairedExplicitRK2Integrator{RealT <: Real, uType, Params, Sol, F,
k_higher::uType
end

"""
calculate_cfl(ode_algorithm::AbstractPairedExplicitRKSingle, ode)

This function computes the CFL number once using the initial condition of the problem and the optimal timestep (`dt_opt`) from the ODE algorithm.
"""
warisa-r marked this conversation as resolved.
Show resolved Hide resolved
function calculate_cfl(ode_algorithm::AbstractPairedExplicitRKSingle, ode)
t0 = first(ode.tspan)
u_ode = ode.u0
semi = ode.p
dt_opt = ode_algorithm.dt_opt

mesh, equations, solver, cache = mesh_equations_solver_cache(semi)
u = wrap_array(u_ode, mesh, equations, solver, cache)

cfl_number = dt_opt / max_dt(u, t0, mesh,
have_constant_speed(equations), equations,
solver, cache)
return cfl_number
end

"""
add_tstop!(integrator::PairedExplicitRK2Integrator, t)
Add a time stop during the time integration process.
Expand Down
15 changes: 15 additions & 0 deletions test/test_tree_1d_advection.jl
Original file line number Diff line number Diff line change
Expand Up @@ -115,6 +115,21 @@ end
@test (@allocated Trixi.rhs!(du_ode, u_ode, semi, t)) < 8000
end
end

# Testing the second-order paired explicit Runge-Kutta (PERK) method with the optimal CFL number
@trixi_testset "elixir_advection_perk2_optimal_cfl.jl" begin
@test_trixi_include(joinpath(EXAMPLES_DIR, "elixir_advection_perk2_optimal_cfl.jl"),
l2=[0.014524726892608971],
linf=[0.0205428426617561])
# Ensure that we do not have excessive memory allocations
# (e.g., from type instabilities)
let
t = sol.t[end]
u_ode = sol.u[end]
du_ode = similar(u_ode)
@test (@allocated Trixi.rhs!(du_ode, u_ode, semi, t)) < 8000
end
end
end

end # module
2 changes: 1 addition & 1 deletion test/test_unit.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1671,7 +1671,7 @@ end
Trixi.download("https://gist.githubusercontent.com/DanielDoehring/8db0808b6f80e59420c8632c0d8e2901/raw/39aacf3c737cd642636dd78592dbdfe4cb9499af/MonCoeffsS6p2.txt",
joinpath(path_coeff_file, "gamma_6.txt"))

ode_algorithm = Trixi.PairedExplicitRK2(6, path_coeff_file)
ode_algorithm = Trixi.PairedExplicitRK2(6, path_coeff_file, 42) # dummy optimal time step (dt_opt plays no role in determining a_matrix)

@test isapprox(ode_algorithm.a_matrix,
[0.12405417889682908 0.07594582110317093
Expand Down
Loading