- Improve data augmentation: synthesize EEGs with a forward model enabled recurrent conditional wGAN
- Improve understanding and diagnostics: Create a siamese network capable of generated a manifold of EEGs
- Imporved singal processing: Remove Artifacts from EEGs
- implement progressive gan
- create generations with progressive gan
- add physics models to progressive gan
- Test g loss with c and d attributes
- Create forward model enabled generator
- Create conditional generator (concat)
- Create conditional generator (projection)
- Enable larger continuous EEG generation (Add St as input)
- Create convolutional varient
- Create remove noise network (conv and recurrent)
- Test different intermediate representations
- Get the entire architecture to compile
- Train Siamese Network
- Use Siamese Network to Generate a manifold
- Use cGAN for data augmentation