Skip to content

Lie Algebra Convolutional Network implementation

License

Notifications You must be signed in to change notification settings

Dolphin4mi/L-conv-code

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Lie Algebra Convolutional Network (L-conv) implementation

Paper: Automatic Symmetry Discovery with Lie Algebra Convolutional Network Nima Dehmamy, Robin Walters, Yanchen Liu, Dashun Wang, Rose Yu NeurIPS 2021
(find updated versions on arxiv)

Contents

A simple implementation of the L-conv layer in PyTorch (>=1.8) can be found in src/lconv.py. The L-conv layer acts similar to a graph convlutional layer (GCN), so prepare your input in a similar fashion (e.g. flatten the spatial dimensions). The input should have shape (batch, channels, #nodes) (e.g. on an image, # nodes = # pixels)
This repository also contains code and notebooks for the experiemnts in the paper (appendix C and D) under paper-code. Most experiments in appendix D use an older (but identical) implementation in Tensoflow (>=2.1). Comparison with LieConv in appendix D requires the LieConv packages.

TBA soon:

Exmaples of uses will be added soon.

About

Lie Algebra Convolutional Network implementation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 99.8%
  • Python 0.2%