Skip to content

Frank Wolfe and Accelerated Bregman Proximal Gradient methods comparisons

License

Notifications You must be signed in to change notification settings

DredderGun/accbpg_and_fw

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

51 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Accelerated Bregman Proximal Gradient Methods and Frank-Wolfe with divergence

A Python package of accelerated first-order algorithms for solving relatively-smooth convex optimization problems

minimize { f(x) + P(x) | x in C }

with a reference function h(x), where C is a closed convex set and

  • h(x) is convex and essentially smooth on C;
  • f(x) is convex and differentiable, and L-smooth relative to h(x), that is, f(x)-L*h(x) is convex;
  • P(x) is convex and closed (lower semi-continuous).

Implemented algorithms in HRX2018:

  • BPG(Bregman proximal gradient) method with line search option
  • ABPG (Accelerated BPG) method
  • ABPG-expo (ABPG with exponent adaption)
  • ABPG-gain (ABPG with gain adaption)
  • ABDA (Accelerated Bregman dual averaging) method
  • Frank-Wolfe algorithm with Bregman divergence

Additional algorithms for solving D-Optimal Experiment Design problems:

  • D_opt_FW (basic Frank-Wolfe method)
  • D_opt_FW_away (Frank-Wolfe method with away steps)

Install

Clone or fork from GitHub. Or install from PyPI:

pip install accbpg

Usage

Example: generate a random instance of D-optimal design problem and solve it using two different methods.

import accbpg

# generate a random instance of D-optimal design problem of size 80 by 200
f, h, L, x0 = accbpg.D_opt_design(80, 200)

# solve the problem instance using BPG with line search
x1, F1, G1, T1 = accbpg.BPG(f, h, L, x0, maxitrs=1000, verbskip=100)

# solve it again using ABPG with gamma=2
x2, F2, G2, T2 = accbpg.ABPG(f, h, L, x0, gamma=2, maxitrs=1000, verbskip=100)

# solve it again using adaptive variant of ABPG with gamma=2
x3, F3, G3, _, _, T3 = accbpg.ABPG_gain(f, h, L, x0, gamma=2, maxitrs=1000, verbskip=100)

D-optimal experiment design problems can be constructed from files (LIBSVM format) directly using

f, h, L, X0 = accbpg.D_opt_libsvm(filename)

All algorithms can work with customized functions f(x) and h(x), and an example is given in this Python file.

Additional examples

About

Frank Wolfe and Accelerated Bregman Proximal Gradient methods comparisons

Resources

License

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 95.0%
  • Python 5.0%