Skip to content

Movie recommendation system using YouTube recommendation system.

Notifications You must be signed in to change notification settings

Dryjelly/Youtube_Recommendation_tf_keras

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Youtube Recommendation Tensorflow-Keras

Movie recommendation system using YouTube recommendation system.

유튜브 추천 시스템을 사용한 영화 추천 시스템.

Simple tf-keras code of paper [Deep Neural Networks for YouTube Recommendations].
Jupiter notebook files recommendation.ipynb with detailed description.

유튜브 추천 시스템을 논문과 여러 자료를 참고하여 텐서플로 케라스로 구현하였습니다.
주피터 노트북 파일 recommendation.ipynb 에 자세한 설명이 포함되어 있습니다.

drawing

This code contains 'candidate generation' only.
This code does not include 'ranking'.

이 코드는 'candidation generaion' 부분만 포함합니다.
'ranking' 은 포함하지 않습니다.

How to test code

Check recommendation.ipynb file

  • Result
Movie Recommendation for user 1 (movie_ID): [53, 1064, 1111, 510, 1488, 239, 230, 1157, 281, 162]
  • Matrix (User 1 MAP)
### Model Prediction VS Random Pick ###

top N  = 1 -------------------

model  = Rank 1 Recall    : 0.0072992700729927005 (1/137)
model  = Rank 1 Precision : 1.0 (1/1)

random = Rank 1 Recall    : 0.0 (0/137)
random = Rank 1 Precision : 0.0 (0/1)

top N  = 10 -------------------

model  = Rank 10 Recall    : 0.014598540145985401 (2/137)
model  = Rank 10 Precision : 0.2 (2/10)

random = Rank 10 Recall    : 0.0 (0/137)
random = Rank 10 Precision : 0.0 (0/10)

top N  = 20 -------------------

model  = Rank 20 Recall    : 0.014598540145985401 (2/137)
model  = Rank 20 Precision : 0.1 (2/20)

random = Rank 20 Recall    : 0.0072992700729927005 (1/137)
random = Rank 20 Precision : 0.05 (1/20)

top N  = 30 -------------------

model  = Rank 30 Recall    : 0.029197080291970802 (4/137)
model  = Rank 30 Precision : 0.13333333333333333 (4/30)

random = Rank 30 Recall    : 0.0364963503649635 (5/137)
random = Rank 30 Precision : 0.16666666666666666 (5/30)

top N  = 40 -------------------

model  = Rank 40 Recall    : 0.058394160583941604 (8/137)
model  = Rank 40 Precision : 0.2 (8/40)

random = Rank 40 Recall    : 0.014598540145985401 (2/137)
random = Rank 40 Precision : 0.05 (2/40)

top N  = 50 -------------------

model  = Rank 50 Recall    : 0.06569343065693431 (9/137)
model  = Rank 50 Precision : 0.18 (9/50)

random = Rank 50 Recall    : 0.014598540145985401 (2/137)
random = Rank 50 Precision : 0.04 (2/50)

mAP@50 = 0.19529945953383454

Environment

  • python
  • tensorflow 2

Reference

About

Movie recommendation system using YouTube recommendation system.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published