Skip to content

code about preprocessing and dataloaders for video dataset including UCF101 and HMDB51 based on PyTorch

Notifications You must be signed in to change notification settings

Emily0219/video-dataset-preprocess

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 

Repository files navigation

Video Dataset Preprocess

Implementations for preprocessing video datasets including UCF-101 and HMDB-51

Original Data preprocess

UCF-101

  • Download videos and train/test splits here. Make sure to put the video files as the following structure:
  UCF-101
  ├── ApplyEyeMakeup
  │   ├── v_ApplyEyeMakeup_g01_c01.avi
  │   └── ...
  ├── ApplyLipstick
  │   ├── v_ApplyLipstick_g01_c01.avi
  │   └── ...
  ├── Archery
  │   ├── v_Archery_g01_c01.avi
  │   └── ...

Also, the label file's structure is as follows:

  ucfTrainTestlist
  ├── classind.txt
  ├── testlist01.txt
  ├── testlist02.txt
  ├── testlist03.txt
  ├── trainlist01.txt
  ├── trainlist02.txt 
  └── trainlist03.txt 
  • Convert from avi to jpg files using utils/video2jpg_ucf101_hmdb51.py
python utils/video2jpg_ucf101_hmdb51.py avi_video_directory jpg_video_directory
  • Generate n_frames files using utils/n_frames_ucf101_hmdb51.py
python utils/n_frames_ucf101_hmdb51.py jpg_video_directory

After pre-processing, the image output dir's structure is as follows:

  UCF101_n_frames
  ├── ApplyEyeMakeup
  │   ├── v_ApplyEyeMakeup_g01_c01
  │   │   ├── image_00001.jpg
  │   │   ├── ...
  │   │   └── n_frames
  │   └── ...
  ├── ApplyLipstick
  │   ├── v_ApplyLipstick_g01_c01
  │   │   ├── image_00001.jpg
  │   │   ├── ...
  │   │   └── n_frames
  │   └── ...
  ├── Archery
  │   ├── v_Archery_g01_c01
  │   │   ├── image_00001.jpg
  │   │   ├── ...
  │   │   └── n_frames
  │   └── ...

HMDB-51

  • Download videos and train/test splits here. Make sure to put the video files as the following structure:
  HMDB51
  ├── brush_hair
  │   ├── April_09_brush_hair_u_nm_np1_ba_goo_0.avi
  │   └── ...
  ├── cartwheel
  │   ├── (Rad)Schlag_die_Bank!_cartwheel_f_cm_np1_le_med_0.avi
  │   └── ...
  ├── catch
  │   ├── 96-_Torwarttraining_1_catch_f_cm_np1_le_bad_0.avi
  │   └── ...
  • Convert from avi to jpg files using utils/video_jpg_ucf101_hmdb51.py
python utils/video2jpg_ucf101_hmdb51.py avi_video_directory jpg_video_directory
  • Generate n_frames files using utils/n_frames_ucf101_hmdb51.py
python utils/n_frames_ucf101_hmdb51.py jpg_video_directory
  • Generate annotation file in txt format using utils/hmdb_gen_txt.py
    • annotation_dir_path includes brush_hair_test_split1.txt, ...
python utils/hmdb_gen_txt.py annotation_dir_path jpg_video_directory outdir

After pre-processing, the image output dir's structure is as follows:

  hmdb51_n_frames
  ├── brush_hair
  │   ├── April_09_brush_hair_u_nm_np1_ba_goo_0
  │   │   ├── image_00001.jpg
  │   │   ├── ...
  │   │   └── n_frames
  │   └── ...
  ├── cartwheel
  │   │   ├── image_00001.jpg
  │   │   ├── ...
  │   │   └── n_frames
  │   └── ...
  ├── catch
  │   ├── 96-_Torwarttraining_1_catch_f_cm_np1_le_bad_0
  │   │   ├── image_00001.jpg
  │   │   ├── ...
  │   │   └── n_frames
  │   └── ...

The Train_Test split file contains following structure:

  hmdb51_TrainTestlist
  ├── hmdb51_train.txt
  ├── hmdb51_test.txt
  └── hmdb51_val.txt

load data with PyTorch

Usage of dataloader

from dataloaders.hmdb_dataset import HMDBDataset

image_dir = '/home/../hmdb51_n_frames/'
label_file = '/home/../hmdb51_TrainTestlist/hmdb51_train.txt'
hmdb_trainset = HMDBDataset(image_dir, label_file, split='train', clip_len=16)

Citation

The processing codes refer to this repo 3D-ResNets-PyTorch.

@inproceedings{hara3dcnns,
  author={Kensho Hara and Hirokatsu Kataoka and Yutaka Satoh},
  title={Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  pages={6546--6555},
  year={2018},
}

About

code about preprocessing and dataloaders for video dataset including UCF101 and HMDB51 based on PyTorch

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages