Skip to content

Commit

Permalink
perf: Fix join cost estimates (#3831)
Browse files Browse the repository at this point in the history
This PR fixes join cost estimates in the following ways:
- Uses number of rows instead of size in bytes for making probe side
decisions
- Decreases the aggressiveness of cardinality reductions when there is
an `is not NULL` filter
- Decreases the aggressiveness of inequality filters, especially since
these often appear as pairs of a "between" clause
- Increases the aggressiveness of exact equality filters.
- For join edges where there are more than one join condition, adjust
cost estimations so that we compute the total domain as `|(key1, key2,
...)| ~= min(|left side|, |right side|)`.
With multiple join conditions, we know that the join is not a pk-fk join
on each join key. Rather, it's a pk-fk join on the tuple of join keys,
which we estimate as the cardinality of the smaller table of the join.
  • Loading branch information
desmondcheongzx authored Feb 28, 2025
1 parent b830647 commit 2351ba4
Show file tree
Hide file tree
Showing 4 changed files with 234 additions and 67 deletions.
12 changes: 6 additions & 6 deletions src/daft-dsl/src/expr/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1586,10 +1586,10 @@ pub fn estimated_selectivity(expr: &Expr, schema: &Schema) -> f64 {
let right_selectivity = estimated_selectivity(right, schema);
match op {
// Fixed selectivity for all common comparisons
Operator::Eq => 0.1,
Operator::EqNullSafe => 0.1,
Operator::NotEq => 0.9,
Operator::Lt | Operator::LtEq | Operator::Gt | Operator::GtEq => 0.2,
Operator::Eq => 0.05,
Operator::EqNullSafe => 0.05,
Operator::NotEq => 0.95,
Operator::Lt | Operator::LtEq | Operator::Gt | Operator::GtEq => 0.5,

// Logical operators with fixed estimates
// P(A and B) = P(A) * P(B)
Expand Down Expand Up @@ -1619,8 +1619,8 @@ pub fn estimated_selectivity(expr: &Expr, schema: &Schema) -> f64 {
Expr::Not(expr) => 1.0 - estimated_selectivity(expr, schema),

// Fixed selectivity for IS NULL and IS NOT NULL, assume not many nulls
Expr::IsNull(_) => 0.1,
Expr::NotNull(_) => 0.9,
Expr::IsNull(_) => 0.05,
Expr::NotNull(_) => 0.95,

// All membership operations use same selectivity
Expr::IsIn(_, _) | Expr::Between(_, _, _) | Expr::InSubquery(_, _) | Expr::Exists(_) => 0.2,
Expand Down
16 changes: 8 additions & 8 deletions src/daft-local-execution/src/pipeline.rs
Original file line number Diff line number Diff line change
Expand Up @@ -344,8 +344,8 @@ pub fn physical_plan_to_pipeline(
StatsState::Materialized(left_stats),
StatsState::Materialized(right_stats),
) => {
let left_size = left_stats.approx_stats.size_bytes;
let right_size = right_stats.approx_stats.size_bytes;
let left_size = left_stats.approx_stats.num_rows;
let right_size = right_stats.approx_stats.num_rows;
left_size <= right_size
}
// If stats are only available on the right side of the join, and the upper bound bytes on the
Expand All @@ -363,8 +363,8 @@ pub fn physical_plan_to_pipeline(
StatsState::Materialized(left_stats),
StatsState::Materialized(right_stats),
) => {
let left_size = left_stats.approx_stats.size_bytes;
let right_size = right_stats.approx_stats.size_bytes;
let left_size = left_stats.approx_stats.num_rows;
let right_size = right_stats.approx_stats.num_rows;
right_size as f64 >= left_size as f64 * 1.5
}
// If stats are only available on the left side of the join, and the upper bound bytes on the left
Expand All @@ -382,8 +382,8 @@ pub fn physical_plan_to_pipeline(
StatsState::Materialized(left_stats),
StatsState::Materialized(right_stats),
) => {
let left_size = left_stats.approx_stats.size_bytes;
let right_size = right_stats.approx_stats.size_bytes;
let left_size = left_stats.approx_stats.num_rows;
let right_size = right_stats.approx_stats.num_rows;
(right_size as f64 * 1.5) >= left_size as f64
}
// If stats are only available on the right side of the join, and the upper bound bytes on the
Expand All @@ -401,8 +401,8 @@ pub fn physical_plan_to_pipeline(
StatsState::Materialized(left_stats),
StatsState::Materialized(right_stats),
) => {
let left_size = left_stats.approx_stats.size_bytes;
let right_size = right_stats.approx_stats.size_bytes;
let left_size = left_stats.approx_stats.num_rows;
let right_size = right_stats.approx_stats.num_rows;
right_size as f64 > left_size as f64 * 1.5
}
// If stats are only available on the left side of the join, and the upper bound bytes on the left
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -241,7 +241,7 @@ mod tests {
let order = $orderer.order(&graph);
assert!(JoinOrderTree::order_eq(&order, &$optimal_order));
// Check that the number of join conditions does not increase due to join edge inference.
assert_eq!(JoinOrderTree::num_join_conditions(&order), num_edges);
assert!(JoinOrderTree::num_join_conditions(&order) <= num_edges);
};
}

Expand Down Expand Up @@ -290,45 +290,6 @@ mod tests {
create_and_test_join_order!(nodes, edges, BruteForceJoinOrderer {}, optimal_order);
}

#[test]
fn test_brute_force_order_minimal2() {
// Compared to the previous test, this test has a smaller "large" relation. When joined with "medium" using two join conditions,
// the result produces a smaller relation than "small". Hence the join order should be ((large x medium) x small).
let nodes = vec![("medium", 1_000), ("large", 5_000), ("small", 500)];
let name_to_id = node_to_id_map(nodes.clone());
let edges = vec![
JoinEdge {
node1: name_to_id["medium"],
node1_col_name: "m_medium".to_string(),
node2: name_to_id["large"],
node2_col_name: "l_medium".to_string(),
total_domain: 1_000,
},
JoinEdge {
node1: name_to_id["large"],
node1_col_name: "l_small".to_string(),
node2: name_to_id["small"],
node2_col_name: "s_small".to_string(),
total_domain: 500,
},
JoinEdge {
node1: name_to_id["medium"],
node1_col_name: "m_small".to_string(),
node2: name_to_id["small"],
node2_col_name: "s_small".to_string(),
total_domain: 500,
},
];
let optimal_order = test_join(
test_relation(name_to_id["small"]),
test_join(
test_relation(name_to_id["large"]),
test_relation(name_to_id["medium"]),
),
);
create_and_test_join_order!(nodes, edges, BruteForceJoinOrderer {}, optimal_order);
}

#[test]
fn test_brute_force_order_mock_tpch_q5() {
let nodes = vec![
Expand Down Expand Up @@ -403,6 +364,138 @@ mod tests {
create_and_test_join_order!(nodes, edges, BruteForceJoinOrderer {}, optimal_order);
}

#[test]
fn test_brute_force_order_mock_tpch_sub_q9() {
let nodes = vec![
("nation", 25),
("supplier", 100_000),
("part", 100_000),
("partsupp", 8_000_000),
];
let name_to_id = node_to_id_map(nodes.clone());
let edges = vec![
JoinEdge {
node1: name_to_id["partsupp"],
node1_col_name: "ps_partkey".to_string(),
node2: name_to_id["part"],
node2_col_name: "p_partkey".to_string(),
total_domain: 2_000_000,
},
JoinEdge {
node1: name_to_id["partsupp"],
node1_col_name: "ps_suppkey".to_string(),
node2: name_to_id["supplier"],
node2_col_name: "s_suppkey".to_string(),
total_domain: 100_000,
},
JoinEdge {
node1: name_to_id["supplier"],
node1_col_name: "s_nationkey".to_string(),
node2: name_to_id["nation"],
node2_col_name: "n_nationkey".to_string(),
total_domain: 25,
},
];
let optimal_order = test_join(
test_join(
test_relation(name_to_id["nation"]),
test_relation(name_to_id["supplier"]),
),
test_join(
test_relation(name_to_id["part"]),
test_relation(name_to_id["partsupp"]),
),
);
create_and_test_join_order!(nodes, edges, BruteForceJoinOrderer {}, optimal_order);
}

#[test]
fn test_brute_force_order_mock_tpch_q9() {
let nodes = vec![
("nation", 22),
("orders", 1_350_000),
("lineitem", 4_374_885),
("supplier", 8_100),
("part", 18_000),
("partsupp", 648_000),
];
let name_to_id = node_to_id_map(nodes.clone());
let edges = vec![
JoinEdge {
node1: name_to_id["partsupp"],
node1_col_name: "ps_partkey".to_string(),
node2: name_to_id["part"],
node2_col_name: "p_partkey".to_string(),
total_domain: 200_000,
},
JoinEdge {
node1: name_to_id["partsupp"],
node1_col_name: "ps_partkey".to_string(),
node2: name_to_id["lineitem"],
node2_col_name: "l_partkey".to_string(),
total_domain: 200_000,
},
JoinEdge {
node1: name_to_id["partsupp"],
node1_col_name: "ps_suppkey".to_string(),
node2: name_to_id["lineitem"],
node2_col_name: "l_suppkey".to_string(),
total_domain: 10_000,
},
JoinEdge {
node1: name_to_id["partsupp"],
node1_col_name: "ps_suppkey".to_string(),
node2: name_to_id["supplier"],
node2_col_name: "s_suppkey".to_string(),
total_domain: 10_000,
},
JoinEdge {
node1: name_to_id["orders"],
node1_col_name: "o_orderkey".to_string(),
node2: name_to_id["lineitem"],
node2_col_name: "l_orderkey".to_string(),
total_domain: 1_500_000,
},
JoinEdge {
node1: name_to_id["lineitem"],
node1_col_name: "l_partkey".to_string(),
node2: name_to_id["part"],
node2_col_name: "p_partkey".to_string(),
total_domain: 200_000,
},
JoinEdge {
node1: name_to_id["lineitem"],
node1_col_name: "l_suppkey".to_string(),
node2: name_to_id["supplier"],
node2_col_name: "s_suppkey".to_string(),
total_domain: 10_000,
},
JoinEdge {
node1: name_to_id["supplier"],
node1_col_name: "s_nationkey".to_string(),
node2: name_to_id["nation"],
node2_col_name: "n_nationkey".to_string(),
total_domain: 25,
},
];
let optimal_order = test_join(
test_relation(name_to_id["orders"]),
test_join(
test_relation(name_to_id["lineitem"]),
test_join(
test_join(
test_relation(name_to_id["nation"]),
test_relation(name_to_id["supplier"]),
),
test_join(
test_relation(name_to_id["part"]),
test_relation(name_to_id["partsupp"]),
),
),
),
);
create_and_test_join_order!(nodes, edges, BruteForceJoinOrderer {}, optimal_order);
}
#[test]
fn test_brute_force_order_star_schema() {
let nodes = vec![
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -251,20 +251,27 @@ impl JoinAdjList {
}
}

// Helper function that estimates the total domain for a join between two relations.
fn get_estimated_total_domain(
&self,
left_plan: &LogicalPlanRef,
right_plan: &LogicalPlanRef,
) -> usize {
let left_stats = left_plan.materialized_stats();
let right_stats = right_plan.materialized_stats();
// We multiple the number of rows by the reciprocal of the selectivity to get the original total domain.
let left_rows = left_stats.approx_stats.num_rows as f64
/ left_stats.approx_stats.acc_selectivity.max(0.01);
let right_rows = right_stats.approx_stats.num_rows as f64
/ right_stats.approx_stats.acc_selectivity.max(0.01);
left_rows.min(right_rows).max(1.0) as usize
}

pub(super) fn add_bidirectional_edge(&mut self, node1: JoinNode, node2: JoinNode) {
let node1_id = self.get_or_create_plan_id(&node1.plan);
let node2_id = self.get_or_create_plan_id(&node2.plan);
// Find the minimal total domain for the join columns, either from the current nodes or from the existing total domains.
let mut td = {
let node1_stats = node1.plan.materialized_stats();
let node2_stats = node2.plan.materialized_stats();
// We multiple the number of rows by the reciprocal of the selectivity to get the original total domain.
let node1_rows = node1_stats.approx_stats.num_rows as f64
/ node1_stats.approx_stats.acc_selectivity.max(0.01);
let node2_rows = node2_stats.approx_stats.num_rows as f64
/ node2_stats.approx_stats.acc_selectivity.max(0.01);
node1_rows.min(node2_rows).max(1.0) as usize
};
let mut td = self.get_estimated_total_domain(&node1.plan, &node2.plan);
if let Some(equivalence_set_id) = self
.equivalence_set_map
.get(&(node1_id, node1.relation_name.clone()))
Expand Down Expand Up @@ -365,26 +372,93 @@ impl JoinAdjList {
// Grab the minimum spanning tree of join conditions that connect the left and right trees, i.e. we take at most one join condition
// from each equivalence set of join conditions.
let mut conds = vec![];
let mut seen_equivalence_set_ids = HashSet::new();
let mut added_equivalence_set_id_for_td = HashSet::new();
let mut added_equivalence_set_id_for_conds = HashSet::new();
let mut double_counted_equivalence_set_ids = HashSet::new();
let mut td = 1;
for left_node in left.iter() {
if let Some(neighbors) = self.edges.get(&left_node) {
for right_node in right.iter() {
if let Some(edges) = neighbors.get(&right_node) {
for edge in edges {
// When there is only one join condition, we multiply the total domain by the domain of the equivalence set.
// However, when there's more than one join condition between two nodes, then we know that this is not a pk-fk join
// on the join keys. Rather, it's a pk-fk join on the tuple of join keys. So we estimate its total domain as the
// cardinality of the smaller table. In this case as well, we should avoid multiplying the total domain by the
// domains of the equivalence sets. So we use `double_counted_equivalence_set_ids` to keep track of the
// equivalence sets that we should not multiply the total domain by.
//
// For a more concrete example, consider the following join:
//
// part.x = partsupp.x
//
// Assuming |part| < |partsupp|, then the total domain of the join is |part|.
//
// Now consider the following joins:
//
// part.x = partsupp.x
// supp.y = partsupp.y
// lineitem.x = partsupp.x
// lineitem.y = partsupp.y
//
// Note that there are implicit join edges part.x = lineitem.x and supp.y = lineitem.y that we infer.
//
// Assume |supp| < |part| < |partsupp| < |lineitem|.
//
// When joining part and partsupp, we know that the join is a pk-fk join on part.x,
// so the selectivity of the join is 1/|part|.
//
// When joining partsupp and lineitem, we know that the join is a pk-fk join on (partsupp.x, partsupp.y).
// We cannot use the total domains of |supp| or |part| to determine the total domain of (partsupp.x, partsupp.y)
// in partsupp. Instead, we estimate the total domain of |(partsupp.x, partsupp.y)| in partsupp as |partsupp|.
// So the selectivity of the join is 1/|partsupp|.
//
// The same is true when we join (partsupp x part) and lineitem: the total domain of the join is still |partsupp|.
if edges.len() == 1 {
let edge = edges[0].clone();
let equivalence_set_id = self
.equivalence_set_map
.get(&(left_node, edge.left_on.clone()))
.expect("Left join condition should be part of an equivalence set");
if seen_equivalence_set_ids.insert(*equivalence_set_id) {
if added_equivalence_set_id_for_td.insert(*equivalence_set_id) {
td *= self.total_domains[*equivalence_set_id];
}
if added_equivalence_set_id_for_conds.insert(*equivalence_set_id) {
conds.push(edge.clone());
}
}
if edges.len() > 1 {
let node1_plan = self
.id_to_plan
.get(&left_node)
.expect("left id not found in adj list");
let node2_plan = self
.id_to_plan
.get(&right_node)
.expect("right id not found in adj list");
td *= self.get_estimated_total_domain(node1_plan, node2_plan);
for edge in edges {
let equivalence_set_id = self
.equivalence_set_map
.get(&(left_node, edge.left_on.clone()))
.expect(
"Left join condition should be part of an equivalence set",
);
if added_equivalence_set_id_for_conds.insert(*equivalence_set_id) {
conds.push(edge.clone());
}
double_counted_equivalence_set_ids.insert(*equivalence_set_id);
}
}
}
}
}
}
for equivalence_set_id in double_counted_equivalence_set_ids {
if added_equivalence_set_id_for_td.contains(&equivalence_set_id) {
td /= self.total_domains[equivalence_set_id].max(1);
}
}
td = td.max(1);
(conds, td)
}
}
Expand Down

0 comments on commit 2351ba4

Please sign in to comment.