Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improve the normalize observation testing and determinism #784

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 31 additions & 0 deletions tests/wrappers/test_normalize_observation.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,40 @@
"""Test suite for NormalizeObservation wrapper."""
import numpy as np

from gymnasium import spaces, wrappers
from gymnasium.wrappers import NormalizeObservation
from tests.testing_env import GenericTestEnv


def test_normalization(convergence_steps: int = 1000, testing_steps: int = 100):
env = GenericTestEnv(
observation_space=spaces.Box(
low=np.array([0, -10, -5], dtype=np.float32),
high=np.array([10, -5, 10], dtype=np.float32),
)
)
env = wrappers.NormalizeObservation(env)

env.reset(seed=123)
env.observation_space.seed(123)
env.action_space.seed(123)
for _ in range(convergence_steps):
env.step(env.action_space.sample())

observations = []
for _ in range(testing_steps):
obs, *_ = env.step(env.action_space.sample())
observations.append(obs)
observations = np.array(observations) # (100, 3)

mean_obs = np.mean(observations, axis=0)
var_obs = np.var(observations, axis=0)
assert mean_obs.shape == (3,) and var_obs.shape == (3,)

assert np.allclose(mean_obs, np.zeros(3), atol=0.15)
assert np.allclose(var_obs, np.ones(3), atol=0.15)


def test_update_running_mean_property():
"""Tests that the property `_update_running_mean` freezes/continues the running statistics updating."""
env = GenericTestEnv()
Expand Down
80 changes: 55 additions & 25 deletions tests/wrappers/vector/test_normalize_observation.py
Original file line number Diff line number Diff line change
@@ -1,13 +1,12 @@
"""Test suite for vector NormalizeObservation wrapper.."""
"""Test suite for vector NormalizeObservation wrapper."""
import numpy as np

from gymnasium import spaces, wrappers
from gymnasium.vector import SyncVectorEnv
from gymnasium.vector.utils import create_empty_array
from tests.testing_env import GenericTestEnv


def thunk():
def create_env():
return GenericTestEnv(
observation_space=spaces.Box(
low=np.array([0, -10, -5], dtype=np.float32),
Expand All @@ -16,55 +15,86 @@ def thunk():
)


def test_against_wrapper(
n_envs=3,
n_steps=250,
def test_normalization(
n_envs: int = 2, convergence_steps: int = 250, testing_steps: int = 100
):
vec_env = SyncVectorEnv([create_env for _ in range(n_envs)])
vec_env = wrappers.vector.NormalizeObservation(vec_env)

vec_env.reset(seed=123)
vec_env.observation_space.seed(123)
vec_env.action_space.seed(123)
for _ in range(convergence_steps):
vec_env.step(vec_env.action_space.sample())

observations = []
for _ in range(testing_steps):
obs, *_ = vec_env.step(vec_env.action_space.sample())
observations.append(obs)
observations = np.array(observations) # (100, 2, 3)

mean_obs = np.mean(observations, axis=(0, 1))
var_obs = np.var(observations, axis=(0, 1))
assert mean_obs.shape == (3,) and var_obs.shape == (3,)

assert np.allclose(mean_obs, np.zeros(3), atol=0.15)
assert np.allclose(var_obs, np.ones(3), atol=0.2)


def test_wrapper_equivalence(
n_envs: int = 3,
n_steps: int = 250,
mean_rtol=np.array([0.1, 0.4, 0.25]),
var_rtol=np.array([0.15, 0.15, 0.18]),
):
vec_env = SyncVectorEnv([thunk for _ in range(n_envs)])
vec_env = SyncVectorEnv([create_env for _ in range(n_envs)])
vec_env = wrappers.vector.NormalizeObservation(vec_env)

vec_env.reset(seed=123)
vec_env.observation_space.seed(123)
vec_env.action_space.seed(123)
for _ in range(n_steps):
vec_env.step(vec_env.action_space.sample())

env = wrappers.Autoreset(thunk())
env = wrappers.Autoreset(create_env())
env = wrappers.NormalizeObservation(env)
env.reset(seed=123)
env.action_space.seed(123)
for _ in range(n_envs * n_steps):
for _ in range(n_steps // n_envs):
env.step(env.action_space.sample())

assert np.allclose(env.obs_rms.mean, vec_env.obs_rms.mean, rtol=mean_rtol)
assert np.allclose(env.obs_rms.var, vec_env.obs_rms.var, rtol=var_rtol)


def test_update_running_mean():
env = SyncVectorEnv([thunk for _ in range(2)])
env = SyncVectorEnv([create_env for _ in range(2)])
env = wrappers.vector.NormalizeObservation(env)

# Default value is True
assert env.update_running_mean

obs, _ = env.reset()
env.reset()
for _ in range(100):
env.step(env.action_space.sample())

# Disable
# Disable updating the running mean
env.update_running_mean = False
rms_mean = np.copy(env.obs_rms.mean)
rms_var = np.copy(env.obs_rms.var)
copied_rms_mean = np.copy(env.obs_rms.mean)
copied_rms_var = np.copy(env.obs_rms.var)

val_step = 25
obs_buffer = create_empty_array(env.observation_space, val_step)
env.action_space.seed(123)
for i in range(val_step):
obs, _, _, _, _ = env.step(env.action_space.sample())
obs_buffer[i] = obs

assert np.all(rms_mean == env.obs_rms.mean)
assert np.all(rms_var == env.obs_rms.var)
assert np.allclose(np.mean(obs_buffer, axis=(0, 1)), 0, atol=0.5)
assert np.allclose(np.var(obs_buffer, axis=(0, 1)), 1, atol=0.5)
# Continue stepping through the environment and check that the running mean is not effected
for i in range(10):
env.step(env.action_space.sample())

assert np.all(copied_rms_mean == env.obs_rms.mean)
assert np.all(copied_rms_var == env.obs_rms.var)

# Re-enable updating the running mean
env.update_running_mean = True

for i in range(10):
env.step(env.action_space.sample())

assert np.any(copied_rms_mean != env.obs_rms.mean)
assert np.any(copied_rms_var != env.obs_rms.var)
Loading