Skip to content

Commit

Permalink
🚧 Attempt at feed through
Browse files Browse the repository at this point in the history
  • Loading branch information
je-cook committed Oct 21, 2024
1 parent 8264361 commit 7dcb723
Show file tree
Hide file tree
Showing 5 changed files with 86 additions and 13 deletions.
13 changes: 12 additions & 1 deletion bluemira/equilibria/optimisation/problem/_breakdown.py
Original file line number Diff line number Diff line change
Expand Up @@ -223,7 +223,15 @@ def __init__(
max_currents = np.atleast_1d(max_currents)
self.bounds = (-max_currents / self.scale, max_currents / self.scale)

def optimise(self, x0=None, *, fixed_coils=True):
def optimise(
self,
x0=None,
*,
fixed_coils: bool = True,
keep_history: bool = False,
check_constraints: bool = False,
verbose: bool = False,
):
"""
Solve the optimisation problem.
"""
Expand All @@ -246,6 +254,9 @@ def optimise(self, x0=None, *, fixed_coils=True):
bounds=self.bounds,
eq_constraints=eq_constraints,
ineq_constraints=ineq_constraints,
keep_history=keep_history,
check_constraints=check_constraints,
check_constraints_warn=verbose,
)

opt_currents = opt_result.x
Expand Down
36 changes: 31 additions & 5 deletions bluemira/equilibria/optimisation/problem/_nested_position.py
Original file line number Diff line number Diff line change
Expand Up @@ -194,6 +194,8 @@ def __init__(
initial_currents=None,
*,
debug: bool = False,
keep_history: bool = True,
check_constraints: bool = True,
):
self.coilset = coilset
self.position_mapper = position_mapper
Expand All @@ -214,6 +216,9 @@ def __init__(
opt_dimension = self.position_mapper.dimension
self.bounds = (np.zeros(opt_dimension), np.ones(opt_dimension))

self.keep_history = keep_history
self.check_constraints = check_constraints

@staticmethod
def _run_reporting(itern, max_fom, verbose):
"""
Expand Down Expand Up @@ -248,7 +253,10 @@ def _run_diagnostics(
debug[entry].append([lcfs, value])

def sub_opt_objective(
self, vector: npt.NDArray[np.float64], *, verbose: bool = False
self,
vector: npt.NDArray[np.float64],
*,
verbose: bool = False,
) -> float:
"""Run the sub-optimisations and return the largest figure of merit."""
pos_map = self.position_mapper.to_xz_dict(vector)
Expand All @@ -262,7 +270,12 @@ def sub_opt_objective(
for sub_opt_prob in self.sub_opt_problems:
sub_opt_prob.coilset.set_optimisation_state(coil_position_map=pos_map)

result = sub_opt_prob.optimise(x0=self.initial_currents, fixed_coils=False)
result = sub_opt_prob.optimise(
x0=self.initial_currents,
fixed_coils=False,
keep_history=self.keep_history,
check_constraints=self.check_constraints,
)

self._run_diagnostics(self.debug, sub_opt_prob, result)
fom_values.append(result.f_x)
Expand All @@ -275,7 +288,10 @@ def objective(
self, vector: npt.NDArray[np.float64], *, verbose: bool = False
) -> float:
"""The objective function of the parent optimisation."""
return self.sub_opt_objective(vector, verbose=verbose)
return self.sub_opt_objective(
vector,
verbose=verbose,
)

def _get_initial_vector(self) -> npt.NDArray[np.float64]:
"""
Expand All @@ -287,7 +303,12 @@ def _get_initial_vector(self) -> npt.NDArray[np.float64]:
return self.position_mapper.to_L(cs_opt_state.xs, cs_opt_state.zs)

def optimise(
self, x0: npt.NDArray | None = None, *, verbose: bool = False
self,
x0: npt.NDArray | None = None,
*,
verbose: bool = False,
keep_history: bool = False,
check_constraints: bool = False,
) -> CoilsetOptimiserResult:
"""
Run the PulsedNestedPositionCOP
Expand All @@ -304,6 +325,8 @@ def optimise(
coilset:
Optimised CoilSet
"""
keep_history = keep_history or self.keep_history
check_constraints = check_constraints or self.check_constraints
if x0 is None:
x0 = self._get_initial_vector()

Expand All @@ -318,12 +341,15 @@ def optimise(
bounds=self.bounds,
eq_constraints=eq_constraints,
ineq_constraints=ineq_constraints,
keep_history=keep_history,
check_constraints=check_constraints,
check_constraints_warn=verbose,
)

optimal_positions = opt_result.x
# Call the objective one last time, makes sure the coilset state
# is set to the optimum
self.sub_opt_objective(optimal_positions)
self.sub_opt_objective(optimal_positions, verbose=verbose)

# Clean up state of Equilibrium objects
for sub_opt in self.sub_opt_problems:
Expand Down
13 changes: 12 additions & 1 deletion bluemira/equilibria/optimisation/problem/_tikhonov.py
Original file line number Diff line number Diff line change
Expand Up @@ -86,7 +86,15 @@ def __init__(
)
self._constraints = [] if constraints is None else constraints

def optimise(self, x0=None, *, fixed_coils=True) -> CoilsetOptimiserResult:
def optimise(
self,
x0=None,
*,
fixed_coils=True,
keep_history: bool = False,
check_constraints: bool = False,
verbose: bool = False,
) -> CoilsetOptimiserResult:
"""
Solve the optimisation problem
Expand Down Expand Up @@ -129,6 +137,9 @@ def optimise(self, x0=None, *, fixed_coils=True) -> CoilsetOptimiserResult:
opt_parameters=self.opt_parameters,
eq_constraints=eq_constraints,
ineq_constraints=ineq_constraints,
keep_history=keep_history,
check_constraints=check_constraints,
check_constraints_warn=verbose,
)

opt_currents = opt_result.x
Expand Down
26 changes: 22 additions & 4 deletions bluemira/equilibria/run.py
Original file line number Diff line number Diff line change
Expand Up @@ -282,7 +282,9 @@ def _get_psi_premag(self):
bluemira_warn("Premagnetisation not calculated")
return np.inf

def run_premagnetisation(self):
def run_premagnetisation(
self, *, keep_history: bool = False, check_constraints: bool = False
):
"""Run the breakdown optimisation problem.
Raises
Expand Down Expand Up @@ -323,7 +325,11 @@ def run_premagnetisation(self):
opt_conditions=self.bd_settings.opt_conditions,
constraints=constraints,
)
result = problem.optimise(fixed_coils=False)
result = problem.optimise(
fixed_coils=False,
keep_history=keep_history,
check_constraints=check_constraints,
)
breakdown.set_breakdown_point(*strategy.breakdown_point)
psi_premag = breakdown.breakdown_psi

Expand Down Expand Up @@ -383,6 +389,8 @@ def run_reference_equilibrium(self):
relaxation=self.eq_settings.relaxation,
fixed_coils=True,
plot=False,
keep_history=True,
check_constraints=True,
)
program()

Expand Down Expand Up @@ -631,7 +639,13 @@ def _prepare_coilset(self, coilset: CoilSet) -> CoilSet:
)
return coilset

def optimise(self, *, verbose: bool = False) -> CoilSet:
def optimise(
self,
*,
verbose: bool = False,
keep_history: bool = False,
check_constraints: bool = False,
) -> CoilSet:
"""
Optimise the coil positions for the start and end of the current flat-top.
"""
Expand All @@ -649,7 +663,11 @@ def optimise(self, *, verbose: bool = False) -> CoilSet:
self.pos_settings.opt_conditions,
constraints=None,
)
result = pos_opt_problem.optimise(verbose=verbose)
result = pos_opt_problem.optimise(
verbose=verbose,
keep_history=keep_history,
check_constraints=check_constraints,
)
optimised_coilset = self._consolidate_coilset(result.coilset, sub_opt_problems)

self.converge_and_snapshot(sub_opt_problems)
Expand Down
11 changes: 9 additions & 2 deletions bluemira/equilibria/solve.py
Original file line number Diff line number Diff line change
Expand Up @@ -468,6 +468,8 @@ def __init__(
gif: bool = False,
figure_folder: str | None = None,
plot_name: str = "default_0",
keep_history: bool = False,
check_constraints: bool = False,
):
self.eq = eq
self.coilset = self.eq.coilset
Expand All @@ -482,7 +484,8 @@ def __init__(
" ConvergenceCriterion."
)
self.fixed_coils = fixed_coils

self.keep_history = keep_history
self.check_constraints = check_constraints
self.relaxation = relaxation
self.maxiter = maxiter
self.plot_flag = plot or (gif and not plot)
Expand All @@ -501,7 +504,11 @@ def __init__(
def _optimise_coilset(self):
self.result = None
try:
self.result = self.opt_prob.optimise(fixed_coils=self.fixed_coils)
self.result = self.opt_prob.optimise(
fixed_coils=self.fixed_coils,
keep_history=self.keep_history,
check_constraints=self.check_constraints,
)
self.coilset = self.result.coilset
except OptimisationError:
self.coilset = self.store[-1]
Expand Down

0 comments on commit 7dcb723

Please sign in to comment.