Accepted at ECCV 2020 | Paper
conda env create -f environment.yml
cd l2o-scale-regularize-test
python train_pretrain_lstm.py --use_second_derivatives=False --include_conv_lstm_problems --test_optimizer=Adam --custom_flag conv_lstm_3_layer_64 --num_testing_itrs 100 --lr 1e-3
cd l2o-scale-regularize-train
python metarun_adapt.py --use_second_derivatives=False --train_dir=adapt_mnist_conv/log-scale-baseline --adapt_mnist_conv_problems --num_partial_unroll_itr_scale=1 --num_meta_iterations=50 --pretrained_model_path ../l2o-scale-regularize-test/records/pretrain/Adam_mnist-B/seed12_model_params.pickle
cd l2o-scale-regularize-train
python metarun_adapt.py --use_second_derivatives=False --train_dir=adapt_mnist_conv/log-optimzier-jacob-a-5e-4 --adapt_mnist_conv_problems --num_partial_unroll_itr_scale=1 --num_meta_iterations=50 --regularize_time=none --alpha=5e-4 --reg_optimizer=True --reg_option=jacob --pretrained_model_path ../l2o-scale-regularize-test/records/pretrain/Adam_mnist-B/seed12_model_params.pickle
cd l2o-scale-regularize-test
python metatest_adapt_lstm.py \
--use_second_derivatives=False \
--test_optimizer=Adam \
--adapt_conv_lstm \
--pretrained_model_path ../l2o-scale-regularize-test/records/pretrain/Adam_lr_0.001_conv_lstm_3_layer_64/seed0_model_params_acc-0.7528409090909091.pickle \
--random_sparse_method layer_wise \
--random_sparse_prob "1.0" \
--batch_size 64 \
--save_dir records_lstm \
--lr 1e-3
cd l2o-scale-regularize-test
python metatest_adapt_lstm.py \
--train_dir=adapt_S/ \
--use_second_derivatives=False \
--adapt_conv_lstm \
--test_optimizer=Adam \
--random_sparse_method layer_wise \
--random_sparse_prob "1.0" \
--batch_size 64 \
--save_dir records_lstm \
--lr 1e-3
cd l2o-scale-regularize-test
python metatest_adapt_lstm.py \
--use_second_derivatives=False \
--test_optimizer=Adagrad \
--adapt_conv_lstm \
--pretrained_model_path ../l2o-scale-regularize-test/records/pretrain/Adam_lr_0.001_conv_lstm_3_layer_64/seed0_model_params_acc-0.7528409090909091.pickle \
--random_sparse_method layer_wise \
--random_sparse_prob "1.0" \
--batch_size 64 \
--save_dir records_lstm \
--lr 1e-3
cd l2o-scale-regularize-test
python metatest_adapt_lstm.py \
--use_second_derivatives=False \
--test_optimizer=SGD \
--adapt_conv_lstm \
--pretrained_model_path ../L2O-Adaptation/l2o-scale-regularize-test/records/pretrain/Adam_lr_0.001_conv_lstm_3_layer_64/seed0_model_params_acc-0.7528409090909091.pickle \
--random_sparse_method layer_wise \
--random_sparse_prob "1.0" \
--batch_size 64 \
--save_dir records_lstm \
--lr 1e-3
cd l2o-scale-regularize-test
python metatest_adapt_lstm.py \
--use_second_derivatives=False \
--train_dir=../l2o-scale-regularize-train/adapt_mnist_conv/log-scale-baseline \
--adapt_conv_lstm \
--pretrained_model_path ../l2o-scale-regularize-test/records/pretrain/Adam_lr_0.001_conv_lstm_3_layer_64/seed0_model_params_acc-0.7528409090909091.pickle \
--random_sparse_method layer_wise \
--random_sparse_prob "1.0" \
--batch_size 64
cd l2o-scale-regularize-test
python metatest_adapt_lstm.py \
--use_second_derivatives=False \
--train_dir=../l2o-scale-regularize-train/adapt_mnist_conv/log-optimzier-jacob-a-5e-4 \
--adapt_conv_lstm \
--pretrained_model_path ../l2o-scale-regularize-test/records/pretrain/Adam_lr_0.001_conv_lstm_3_layer_64/seed0_model_params_acc-0.7528409090909091.pickle \
--random_sparse_method layer_wise \
--random_sparse_prob "0.1 0.3 0.5" \
--batch_size 64
cd l2o-scale-regularize-test
python metatest_adapt_lstm.py \
--use_second_derivatives=False \
--train_dir=../l2o-scale-regularize-train/adapt_mnist_conv/log-optimzier-jacob-a-5e-4 \
--adapt_conv_lstm \
--pretrained_model_path ../l2o-scale-regularize-test/records/pretrain/Adam_lr_0.001_conv_lstm_3_layer_64/seed0_model_params_acc-0.7528409090909091.pickle \
--random_sparse_method layer_wise \
--random_sparse_prob "1.0" \
--batch_size 64
@inproceedings{li2020halo,
title={HALO: Hardware-aware learning to optimize},
author={Li, Chaojian and Chen, Tianlong and You, Haoran and Wang, Zhangyang and Lin, Yingyan},
booktitle={Computer Vision--ECCV 2020: 16th European Conference, Glasgow, UK, August 23--28, 2020, Proceedings, Part IX},
pages={500--518},
year={2020},
organization={Springer}
}
Copyright (c) 2022 GaTech-EIC. All rights reserved. Licensed under the MIT license.