Skip to content

ci: add docker workflow #31

ci: add docker workflow

ci: add docker workflow #31

Workflow file for this run

name: Design pipeline
on:
push:
jobs:
build:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v2
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
- name: Build Docker image
run: docker build -t my-image:latest .
- name: Run Docker container
run: docker run my-image:latest
# defaults:
# run:
# shell: bash -el {0}
#
# steps:
# - uses: actions/checkout@v4
#
# - name: Clone GT4SD
# run: |
# git clone https://github.com/GT4SD/gt4sd-core.git
#
# - uses: conda-incubator/setup-miniconda@v3
# with:
# activate-environment: gt4sd
# environment-file: gt4sd-core/conda_cpu_linux.yml
# python-version: 3.8
# auto-activate-base: false
# use-only-tar-bz2: true
#
# - name: Install dependencies
# run: |
# conda activate gt4sd
# cd gt4sd-core
# pip install --no-deps .
# pip uninstall --yes toxsmi && pip install toxsmi
#
# - name: Load datasets
# run: |
# conda activate gt4sd
# mkdir data
# python scripts/load_data.py \
# --uniprot P05067 \
# --affinity_type IC50 \
# --affinity_cutoff 10000 \
# --output_dir data/ \
# --train_size 0.8 \
# --binary_labels
#
# - name: Train toxsmi model
# run: |
# conda activate gt4sd
# python scripts/train_toxsmi.py \
# --train data/train.csv \
# --test data/valid.csv \
# --smi data/mols.smi \
# --language tokenizer \
# --params config/toxsmi_conf.json \
# --model models \
# --name toxsmi_model
#
# - name: Generate molecules with MoLeR
# run: |
# conda activate gt4sd
# head -n 5 data/mols.smi > data/good_docks.smi
# python scripts/moler_generate_toxsmi.py \
# --smi_path data/good_docks.smi \
# --param_path config/moler_conf.json \
# --output_path data/moler_filtered \
# --predictor_path models/toxsmi_model/weights/best_F1.pt
#
# - name: Generate more diverse molecules with Regression Transformer
# run: |
# conda activate gt4sd
# python scripts/prepare_rt_data.py \
# --smi_path data/moler_filtered/generated.csv \
# --output_path data/moler_filtered/generated_qed.csv
# head -n 10 data/moler_filtered/generated_qed.csv > data/moler_filtered/generated_qed_selected.csv
# python scripts/rt_generate.py \
# --smi_path data/moler_filtered/generated_qed_selected.csv \
# --param_path config/rt_conf.json \
# --output_path data/rt
#
#
#