Skip to content

Commit

Permalink
Refact: Reduce Cognitivee Complex of _compute_vect
Browse files Browse the repository at this point in the history
Signed-off-by: Xavier Weiss <[email protected]>
  • Loading branch information
DEUCE1957 committed Nov 23, 2024
1 parent 887c408 commit 89bb2f5
Showing 1 changed file with 116 additions and 64 deletions.
180 changes: 116 additions & 64 deletions grid2op/Environment/baseEnv.py
Original file line number Diff line number Diff line change
Expand Up @@ -2118,22 +2118,19 @@ def _make_redisp_and_flex(self, already_modified_gen:np.array, new_gen_p:np.arra
np.max(flex_mismatch) >= self._tol_poly)
# If either redispatch or flexibility is active, we need to compute the dispact/flex vector
if (disp_cond or flex_cond):
except_ = self._compute_dispatch_and_flex_vect(already_modified_gen, new_gen_p,
except_ = self._compute_dispatch(already_modified_gen, new_gen_p,
already_modified_load, new_load_p)
valid = except_ is None
return valid, except_

def _compute_dispatch_and_flex_vect(self, already_modified_gen:np.array, new_gen_p:np.array,
already_modified_load:np.array, new_load_p:np.array):
except_ = None


def _compute_involved_in_dispatch(self, new_gen_p:np.array, new_load_p:np.array):
# Handle the case where there are storage, flexibility, or redispatching
# actions or curtailment actions on the "init state" of the grid
if self.nb_time_step == 0:
self._gen_activeprod_t_redisp[:] = new_gen_p
self._load_demand_t_flex[:] = new_load_p

# First define the involved generators / flexible loads
# First find the involved generators / flexible loads
# these are the generators / loads that will be adjusted
gen_involved = (
(new_gen_p > 0.0)
Expand All @@ -2150,6 +2147,10 @@ def _compute_dispatch_and_flex_vect(self, already_modified_gen:np.array, new_gen
)
load_involved[~self.load_flexible] = False
incr_in_load_chronics = new_load_p - (self._load_demand_t_flex - self._actual_flex)
return gen_involved, incr_in_gen_chronics, load_involved, incr_in_load_chronics

def _compute_infeasible_dispatch(self, incr_in_gen_chronics:np.array, gen_involved:np.array,
incr_in_load_chronics:np.array, load_involved:np.array):

# Check if the constraints are violated
## Total available "juice" to go down (incl ramping rates, pmin, pmax, and load size)
Expand Down Expand Up @@ -2204,70 +2205,55 @@ def _compute_dispatch_and_flex_vect(self, already_modified_gen:np.array, new_gen
load_involved = self.load_flexible
except_ = None
else:
return except_tmp
return except_tmp, None, None
else:
return except_

# Define the objective value
return except_, None, None
return None, gen_involved, load_involved

def _compute_dispatch_targets(self, gen_involved, already_modified_gen,
load_involved, already_modified_load):
modded_involved_gens = already_modified_gen[gen_involved]
modded_involved_loads = already_modified_load[load_involved]

target_gen_vals = (self._target_dispatch[gen_involved] -
self._actual_dispatch[gen_involved])
modded_involved_gens = already_modified_gen[gen_involved]
target_gen_vals_mi = target_gen_vals[modded_involved_gens]

target_load_vals = (self._target_flex[load_involved] -
self._actual_flex[load_involved])
modded_involved_loads = already_modified_load[load_involved]
target_load_vals_mi = target_load_vals[modded_involved_loads]

nb_dispatchable = gen_involved.sum()
nb_flexible = load_involved.sum()

tmp_zeros = np.zeros((1, nb_dispatchable + nb_flexible), dtype=dt_float)
gen_coeffs = 1.0 / (self.gen_max_ramp_up +
self.gen_max_ramp_down + self._epsilon_poly)
load_coeffs = 1.0 / (self.load_max_ramp_up +
self.load_max_ramp_down + self._epsilon_poly)
coeffs = np.concatenate((gen_coeffs[gen_involved], load_coeffs[load_involved]))
weights = np.ones(nb_dispatchable + nb_flexible) * coeffs
weights /= weights.sum()


if target_gen_vals_mi.shape[0] == 0 and target_load_vals_mi.shape[0] == 0:
# No dispatch and flex means all dispatchable and flexible
# Otherwise will never get to 0
modded_involved_gens[:] = True
modded_involved_loads[:] = True
target_gen_vals_mi = target_gen_vals[modded_involved_gens]
target_load_vals_mi = target_load_vals[modded_involved_loads]

modded_involved = np.concatenate((modded_involved_gens, modded_involved_loads))

# For numeric stability
# To also scale the input see:
# https://stackoverflow.com/questions/11155721/positive-directional-derivative-for-linesearch
scale_gen_x = max(np.max(np.abs(self._actual_dispatch)), 1.0)
scale_load_x = max(np.max(np.abs(self._actual_flex)), 1.0)
scale_x = dt_float(max(scale_gen_x, scale_load_x))

target_vals_mi = np.concatenate((target_gen_vals_mi, target_load_vals_mi))
target_vals_mi_optim = (1.0 * (target_vals_mi / scale_x)).astype(dt_float)

# See https://stackoverflow.com/questions/11155721/positive-directional-derivative-for-linesearch
# where it is advised to scale the function
scale_objective = max(0.5 * np.abs(target_vals_mi_optim).sum() ** 2, 1.0)
scale_objective = np.round(scale_objective, decimals=4)
scale_objective = dt_float(scale_objective)

# Add the "sum to 0"
mat_sum_0_no_turn_on = np.ones((1, nb_dispatchable+nb_flexible), dtype=dt_float)

# Take into account Energy Storage Systems (ESSs)
# Storages follow the "load convention" so we need to sum the amount of production to sum of storage
# hence the "+ self._amount_storage" below
# self._sum_curtailment_mw is "generator convention" hence the "-" there
const_sum_0_no_turn_on = (np.zeros(1, dtype=dt_float) +
self._amount_storage - self._sum_curtailment_mw)
return target_vals_mi_optim, scale_x, modded_involved

def _compute_dispatch_constraints(self, gen_involved, new_gen_p, incr_in_gen_chronics,
load_involved, new_load_p, incr_in_load_chronics):
# Gen increase in the chronics
new_gen_p_th = new_gen_p[gen_involved] + self._actual_dispatch[gen_involved]

# Load increase in the chronics
new_load_p_th = new_load_p[load_involved] + self._actual_flex[load_involved]

# Minimum value available for dispatch
## 1st limit delta because of pmin
p_min_gen_const = self.gen_pmin[gen_involved] - new_gen_p_th
Expand Down Expand Up @@ -2299,25 +2285,13 @@ def _compute_dispatch_and_flex_vect(self, already_modified_gen:np.array, new_gen

## Take minimum of the 2
max_disp = np.minimum(p_max_const, ramp_up_const).astype(dt_float)

# Add everything into a linear constraint (object equality)
added = 0.5 * self._epsilon_poly
equality_const = LinearConstraint(
mat_sum_0_no_turn_on, # Sum
((const_sum_0_no_turn_on) / scale_x).item(), # Lower Bound
((const_sum_0_no_turn_on) / scale_x).item(), # Upper Bound
)
mat_pmin_max_ramps = np.eye(nb_dispatchable + nb_flexible)
ineq_const = LinearConstraint(
mat_pmin_max_ramps,
(min_disp - added) / scale_x,
(max_disp + added) / scale_x,
)

return min_disp, max_disp

def _compute_dispatch_x0(self, x0, weights, scale_x, gen_involved, already_modified_gen,
load_involved, already_modified_load):
# Choose a good initial point x0 (close to the solution)
# Desired solution is one where the (sum of the) dispatch is split among
# the available generators / flexible loads)
x0 = np.zeros(nb_dispatchable + nb_flexible)
disp_cond = ((np.abs(self._target_dispatch) >= 1e-7).any() or already_modified_gen.any())
flex_cond = ((np.abs(self._target_flex) >= 1e-7).any() or already_modified_load.any())
if disp_cond or flex_cond:
Expand Down Expand Up @@ -2355,15 +2329,91 @@ def _compute_dispatch_and_flex_vect(self, already_modified_gen:np.array, new_gen
dispatch = np.concatenate((self._actual_dispatch[gen_involved],
self._actual_flex[load_involved]))
x0 -= dispatch / scale_x
return x0

modded_involved = np.concatenate((modded_involved_gens, modded_involved_loads))
def _compute_dispatch(self, already_modified_gen:np.array, new_gen_p:np.array,
already_modified_load:np.array, new_load_p:np.array):
except_ = None

(gen_involved, incr_in_gen_chronics, load_involved,
incr_in_load_chronics) = self._compute_involved_in_dispatch(new_gen_p, new_load_p)

(exception, gen_involved,
load_involved) = self._compute_infeasible_dispatch(incr_in_gen_chronics, gen_involved,
incr_in_load_chronics, load_involved)
if exception is not None:
return exception

# >> Define the Optimization Objective <<
(target_vals_mi_optim, scale_x,
modded_involved) = self._compute_dispatch_targets(
gen_involved, already_modified_gen,
load_involved, already_modified_load)

nb_dispatchable = gen_involved.sum()
nb_flexible = load_involved.sum()

# >> Weights and Coefficients <<
tmp_zeros = np.zeros((1, nb_dispatchable + nb_flexible), dtype=dt_float)
gen_coeffs = 1.0 / (self.gen_max_ramp_up +
self.gen_max_ramp_down + self._epsilon_poly)
load_coeffs = 1.0 / (self.load_max_ramp_up +
self.load_max_ramp_down + self._epsilon_poly)
coeffs = np.concatenate((gen_coeffs[gen_involved], load_coeffs[load_involved]))
weights = np.ones(nb_dispatchable + nb_flexible) * coeffs
weights /= weights.sum()

# >> START Dispatch Constraints <<
# Sets limits on how fast the dispatch can change (ramping)
# and how low / high it can be set (pmin-pmax for gens, 0-load_size for loads)
min_disp, max_disp = self._compute_dispatch_constraints(
gen_involved, new_gen_p, incr_in_gen_chronics,
load_involved, new_load_p, incr_in_load_chronics,
)

# Add the "sum to 0"
mat_sum_0_no_turn_on = np.ones((1, nb_dispatchable+nb_flexible), dtype=dt_float)

# Take into account Energy Storage Systems (ESSs)
# Storages follow the "load convention" so we need to sum the amount of production to sum of storage
# hence the "+ self._amount_storage" below
# self._sum_curtailment_mw is "generator convention" hence the "-" there
const_sum_0_no_turn_on = (np.zeros(1, dtype=dt_float) +
self._amount_storage - self._sum_curtailment_mw)

# Add everything into a linear constraint (object equality)
added = 0.5 * self._epsilon_poly
equality_const = LinearConstraint(
mat_sum_0_no_turn_on, # Sum
((const_sum_0_no_turn_on) / scale_x).item(), # Lower Bound
((const_sum_0_no_turn_on) / scale_x).item(), # Upper Bound
)
mat_pmin_max_ramps = np.eye(nb_dispatchable + nb_flexible)
ineq_const = LinearConstraint(
mat_pmin_max_ramps,
(min_disp - added) / scale_x,
(max_disp + added) / scale_x,
)
# >> END Dispatch Constraints <<

# >> Initial point for Optimization <<
x0 = np.zeros(nb_dispatchable + nb_flexible)
x0 = self._compute_dispatch_x0(x0, weights, scale_x,
gen_involved, already_modified_gen,
load_involved, already_modified_load)

# >> START Solve Optimization <<
# Scale Objective, see why:
# https://stackoverflow.com/questions/11155721/positive-directional-derivative-for-linesearch
scale_objective = max(0.5 * np.abs(target_vals_mi_optim).sum() ** 2, 1.0)
scale_objective = np.round(scale_objective, decimals=4)
scale_objective = dt_float(scale_objective)
def target(actual_dispatchable):
# Define objective (quadratic)
quad_ = (actual_dispatchable[modded_involved] - target_vals_mi_optim) ** 2
coeffs_quads = weights[modded_involved] * quad_
coeffs_quads_const = coeffs_quads.sum()
coeffs_quads_const /= scale_objective # scaling the function
coeffs_quads_const /= scale_objective # Scaling
return coeffs_quads_const

def jac(actual_dispatchable):
Expand All @@ -2373,7 +2423,7 @@ def jac(actual_dispatchable):
* weights[modded_involved]
* (actual_dispatchable[modded_involved] - target_vals_mi_optim)
)
res_jac /= scale_objective # scaling the function
res_jac /= scale_objective # Scaling
return res_jac

# Objective function
Expand All @@ -2392,11 +2442,13 @@ def f(init):
)
return this_res
res = f(x0)
# >> End Solvee Optimization <<

if res.success:
optim_gen_dispatch = res.x[0:nb_dispatchable]
self._actual_dispatch[gen_involved] += optim_gen_dispatch * scale_gen_x
self._actual_dispatch[gen_involved] += optim_gen_dispatch * scale_x
optim_load_flex = res.x[nb_dispatchable:]
self._actual_flex[load_involved] += optim_load_flex * scale_load_x
self._actual_flex[load_involved] += optim_load_flex * scale_x
else:
# Check if constraints are "approximately" met
mat_const = np.concatenate((mat_sum_0_no_turn_on, mat_pmin_max_ramps))
Expand All @@ -2412,9 +2464,9 @@ def f(init):
if ok_up and ok_down:
# Can tolerate "small" perturbations
optim_gen_dispatch = res.x[0:nb_dispatchable]
self._actual_dispatch[gen_involved] += optim_gen_dispatch * scale_gen_x
self._actual_dispatch[gen_involved] += optim_gen_dispatch * scale_x[0:nb_dispatchable]
optim_load_flex = res.x[nb_dispatchable:]
self._actual_flex[load_involved] += optim_load_flex * scale_load_x
self._actual_flex[load_involved] += optim_load_flex * scale_x[nb_dispatchable:]
else:
# TODO try with another method here, maybe
error_dispatch = (
Expand Down

0 comments on commit 89bb2f5

Please sign in to comment.