Skip to content

Commit

Permalink
PR #23: 3D Pose Estimation
Browse files Browse the repository at this point in the history
Added 3d pose estimation file
Merge pull request #23 from mahipalimkar/Mahi
  • Loading branch information
iamwatchdogs authored Oct 23, 2024
2 parents 2e74230 + f2f3b66 commit 51edf38
Show file tree
Hide file tree
Showing 2 changed files with 98 additions and 0 deletions.
75 changes: 75 additions & 0 deletions 3d_pose_estimation/3d_pose_estimation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
import cv2
import mediapipe as mp
import numpy as np
import json
import socket

# Set up the UDP socket
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
server_address = ('localhost', 12345) # Port for Unity to listen to

# Function to read and return 3D landmark positions
def read_landmark_positions_3d(results):
if results.pose_world_landmarks is None:
return None
else:
# Extract 3D landmark positions
landmarks = [results.pose_world_landmarks.landmark[lm] for lm in mp.solutions.pose.PoseLandmark]
return np.array([(lm.x, lm.y, lm.z) for lm in landmarks])

# Function to draw landmarks on the image
def draw_landmarks_on_image(frame, results):
if results.pose_landmarks is not None:
mp_drawing = mp.solutions.drawing_utils
mp_pose = mp.solutions.pose
mp_drawing.draw_landmarks(
frame,
results.pose_landmarks,
mp_pose.POSE_CONNECTIONS,
mp_drawing.DrawingSpec(color=(245, 117, 66), thickness=2, circle_radius=2),
mp_drawing.DrawingSpec(color=(245, 66, 230), thickness=2, circle_radius=2),
)

# Real-time 3D pose estimation function
def real_time_pose_estimation():
# Initialize webcam or video
cap = cv2.VideoCapture(0) # Use 0 for webcam

# Initialize Mediapipe Pose model
mp_pose = mp.solutions.pose
pose_detector = mp_pose.Pose(static_image_mode=False, model_complexity=2)

while cap.isOpened():
ret, frame = cap.read()
if not ret:
break

# Convert the frame to RGB (required by Mediapipe)
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

# Process the frame to obtain pose landmarks
results = pose_detector.process(frame_rgb)

# Draw landmarks on the frame (optional for visualization)
draw_landmarks_on_image(frame, results)

# Extract 3D landmarks
landmark_positions_3d = read_landmark_positions_3d(results)
if landmark_positions_3d is not None:
# Send landmark positions to Unity via UDP
data = json.dumps(landmark_positions_3d.tolist()) # Convert to JSON format
sock.sendto(data.encode('utf-8'), server_address) # Send data to Unity
print(f'3D Landmarks: {landmark_positions_3d}') # Optional: Print landmarks to console

# Display the frame with landmarks drawn
cv2.imshow('Real-Time 3D Pose Estimation', frame)

# Exit loop when 'q' key is pressed
if cv2.waitKey(1) & 0xFF == ord('q'):
break

cap.release()
cv2.destroyAllWindows()

if __name__ == "__main__":
real_time_pose_estimation()
23 changes: 23 additions & 0 deletions 3d_pose_estimation/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
# Real-Time 3D Pose Estimation

This project implements real-time 3D pose estimation using MediaPipe and OpenCV. It captures video from a webcam, detects human pose landmarks in 3D, and sends the landmark data to a Unity application via UDP.

## Table of Contents
- [Features](#features)
- [Requirements](#requirements)


## Features
- Real-time detection of 3D pose landmarks using MediaPipe.
- Visualization of detected landmarks on the webcam feed.
- Sending 3D landmark coordinates to a Unity application via UDP for further processing or visualization.
- Option to terminate the program by pressing the 'q' key.

## Requirements
- Python 3.x
- OpenCV
- MediaPipe
- NumPy
- JSON
- Socket

0 comments on commit 51edf38

Please sign in to comment.