-
Notifications
You must be signed in to change notification settings - Fork 1.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
update Step_3.py and openai compatible script
- Loading branch information
1 parent
a2f1654
commit 70dbca1
Showing
3 changed files
with
167 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,66 @@ | ||
import os | ||
import json | ||
import time | ||
import numpy as np | ||
|
||
from lightrag import LightRAG | ||
from lightrag.utils import EmbeddingFunc | ||
from lightrag.llm import openai_complete_if_cache, openai_embedding | ||
|
||
## For Upstage API | ||
# please check if embedding_dim=4096 in lightrag.py and llm.py in lightrag direcotry | ||
async def llm_model_func( | ||
prompt, system_prompt=None, history_messages=[], **kwargs | ||
) -> str: | ||
return await openai_complete_if_cache( | ||
"solar-mini", | ||
prompt, | ||
system_prompt=system_prompt, | ||
history_messages=history_messages, | ||
api_key=os.getenv("UPSTAGE_API_KEY"), | ||
base_url="https://api.upstage.ai/v1/solar", | ||
**kwargs | ||
) | ||
|
||
async def embedding_func(texts: list[str]) -> np.ndarray: | ||
return await openai_embedding( | ||
texts, | ||
model="solar-embedding-1-large-query", | ||
api_key=os.getenv("UPSTAGE_API_KEY"), | ||
base_url="https://api.upstage.ai/v1/solar" | ||
) | ||
## /For Upstage API | ||
|
||
def insert_text(rag, file_path): | ||
with open(file_path, mode='r') as f: | ||
unique_contexts = json.load(f) | ||
|
||
retries = 0 | ||
max_retries = 3 | ||
while retries < max_retries: | ||
try: | ||
rag.insert(unique_contexts) | ||
break | ||
except Exception as e: | ||
retries += 1 | ||
print(f"Insertion failed, retrying ({retries}/{max_retries}), error: {e}") | ||
time.sleep(10) | ||
if retries == max_retries: | ||
print("Insertion failed after exceeding the maximum number of retries") | ||
|
||
cls = "mix" | ||
WORKING_DIR = f"../{cls}" | ||
|
||
if not os.path.exists(WORKING_DIR): | ||
os.mkdir(WORKING_DIR) | ||
|
||
rag = LightRAG(working_dir=WORKING_DIR, | ||
llm_model_func=llm_model_func, | ||
embedding_func=EmbeddingFunc( | ||
embedding_dim=4096, | ||
max_token_size=8192, | ||
func=embedding_func | ||
) | ||
) | ||
|
||
insert_text(rag, f"../datasets/unique_contexts/{cls}_unique_contexts.json") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,99 @@ | ||
import os | ||
import re | ||
import json | ||
import asyncio | ||
from lightrag import LightRAG, QueryParam | ||
from tqdm import tqdm | ||
from lightrag.llm import openai_complete_if_cache, openai_embedding | ||
from lightrag.utils import EmbeddingFunc | ||
import numpy as np | ||
|
||
## For Upstage API | ||
# please check if embedding_dim=4096 in lightrag.py and llm.py in lightrag direcotry | ||
async def llm_model_func( | ||
prompt, system_prompt=None, history_messages=[], **kwargs | ||
) -> str: | ||
return await openai_complete_if_cache( | ||
"solar-mini", | ||
prompt, | ||
system_prompt=system_prompt, | ||
history_messages=history_messages, | ||
api_key=os.getenv("UPSTAGE_API_KEY"), | ||
base_url="https://api.upstage.ai/v1/solar", | ||
**kwargs | ||
) | ||
|
||
async def embedding_func(texts: list[str]) -> np.ndarray: | ||
return await openai_embedding( | ||
texts, | ||
model="solar-embedding-1-large-query", | ||
api_key=os.getenv("UPSTAGE_API_KEY"), | ||
base_url="https://api.upstage.ai/v1/solar" | ||
) | ||
## /For Upstage API | ||
|
||
def extract_queries(file_path): | ||
with open(file_path, 'r') as f: | ||
data = f.read() | ||
|
||
data = data.replace('**', '') | ||
This comment has been minimized.
Sorry, something went wrong. |
||
|
||
queries = re.findall(r'- Question \d+: (.+)', data) | ||
|
||
return queries | ||
|
||
async def process_query(query_text, rag_instance, query_param): | ||
try: | ||
result, context = await rag_instance.aquery(query_text, param=query_param) | ||
return {"query": query_text, "result": result, "context": context}, None | ||
except Exception as e: | ||
return None, {"query": query_text, "error": str(e)} | ||
|
||
def always_get_an_event_loop() -> asyncio.AbstractEventLoop: | ||
try: | ||
loop = asyncio.get_event_loop() | ||
except RuntimeError: | ||
loop = asyncio.new_event_loop() | ||
asyncio.set_event_loop(loop) | ||
return loop | ||
|
||
def run_queries_and_save_to_json(queries, rag_instance, query_param, output_file, error_file): | ||
loop = always_get_an_event_loop() | ||
|
||
with open(output_file, 'a', encoding='utf-8') as result_file, open(error_file, 'a', encoding='utf-8') as err_file: | ||
result_file.write("[\n") | ||
first_entry = True | ||
|
||
for query_text in tqdm(queries, desc="Processing queries", unit="query"): | ||
result, error = loop.run_until_complete(process_query(query_text, rag_instance, query_param)) | ||
|
||
if result: | ||
if not first_entry: | ||
result_file.write(",\n") | ||
json.dump(result, result_file, ensure_ascii=False, indent=4) | ||
first_entry = False | ||
elif error: | ||
json.dump(error, err_file, ensure_ascii=False, indent=4) | ||
err_file.write("\n") | ||
|
||
result_file.write("\n]") | ||
|
||
if __name__ == "__main__": | ||
cls = "mix" | ||
mode = "hybrid" | ||
WORKING_DIR = f"../{cls}" | ||
|
||
rag = LightRAG(working_dir=WORKING_DIR) | ||
rag = LightRAG(working_dir=WORKING_DIR, | ||
llm_model_func=llm_model_func, | ||
embedding_func=EmbeddingFunc( | ||
embedding_dim=4096, | ||
max_token_size=8192, | ||
func=embedding_func | ||
) | ||
) | ||
query_param = QueryParam(mode=mode) | ||
|
||
base_dir='../datasets/questions' | ||
queries = extract_queries(f"{base_dir}/{cls}_questions.txt") | ||
run_queries_and_save_to_json(queries, rag, query_param, f"{base_dir}/result.json", f"{base_dir}/errors.json") |
f576a28