-
Notifications
You must be signed in to change notification settings - Fork 187
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
This is the long matrix multiply example with different kernels
- Loading branch information
Showing
3 changed files
with
232 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
|
||
# Order of the square matrices A, B and C | ||
ORDER = 1024 | ||
|
||
# A elemetns are constant and equal to AVAL | ||
AVAL = 3.0 | ||
|
||
# B elemetns are constant and equal to BVAL | ||
BVAL = 5.0 | ||
|
||
# tolerance used in floating point comparisons | ||
TOL = 0.001 | ||
|
||
# Max dim for NDRange | ||
DIM = 2 | ||
|
||
# number of times to do each multiplication | ||
COUNT = 1 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
|
||
from definitions import * | ||
|
||
# Function to compute the matrix product (sequential algorithm, dot prod) | ||
def seq_mat_mul_sdot(Mdim, Ndim, Pdim, A, B, C): | ||
for i in range(Ndim): | ||
for j in range(Mdim): | ||
tmp = 0.0 | ||
for k in range(Pdim): | ||
tmp += A[i*Ndim+k] * B[k*Pdim+j] | ||
C[i*Ndim+j] = tmp | ||
|
||
# Function to compute errors of the product matrix | ||
def error(Mdim, Ndim, Pdim, C): | ||
cval = float(Pdim) * AVAL * BVAL | ||
errsq = 0.0 | ||
for i in range(Ndim): | ||
for j in range(Mdim): | ||
err = C[i*Ndim+j] - cval | ||
errsq += err * err | ||
return errsq; | ||
|
||
|
||
# Function to analyze and output results | ||
def results(Mdim, Ndim, Pdim, C, run_time): | ||
mflops = 2.0 * Mdim * Ndim * Pdim/(1000000.0* run_time) | ||
print run_time, "seconds at", mflops, "MFLOPS" | ||
errsq = error(Mdim, Ndim, Pdim, C) | ||
if (errsq > TOL): | ||
print "Errors in multiplication:", errsq |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,184 @@ | ||
# | ||
# Matrix Multiplication Driver | ||
# | ||
# This is a driver program to test various ways of computing | ||
# the product: | ||
# C = A * B | ||
# | ||
# A and B are constant matrices, square and the order is | ||
# set as a constant, ORDER (see definitions.py). This is so | ||
# we can make a quick test of the multiplication result. | ||
# | ||
# History: C++ version written by Tim Mattson, August 2010 | ||
# Modified by Simon McIntosh-Smith, September 2011 | ||
# Modified by Tom Deakin and Simon McIntosh-Smith, October 2012 | ||
# Ported to Python by Tom Deakin, July 2013 | ||
# | ||
|
||
from helper import * | ||
from definitions import * | ||
|
||
import pyopencl as cl | ||
import numpy | ||
from time import time | ||
|
||
# A[N][P], B[P][M], C[N][M] | ||
Ndim = ORDER; | ||
Pdim = ORDER; | ||
Mdim = ORDER; | ||
|
||
# Number of elements in the matrix | ||
sizeA = Ndim * Pdim | ||
sizeB = Pdim * Mdim | ||
sizeC = Ndim * Mdim | ||
|
||
|
||
# A matrix | ||
h_A = numpy.empty(sizeA).astype(numpy.float32) | ||
h_A.fill(AVAL) | ||
|
||
# B matrix | ||
h_B = numpy.empty(sizeB).astype(numpy.float32) | ||
h_B.fill(BVAL) | ||
|
||
# C matrix | ||
h_C = numpy.empty(sizeC).astype(numpy.float32) | ||
|
||
print "\n===== Sequential, matrix mult (dot prod), order", ORDER, "on host CPU ======\n" | ||
|
||
for i in range(COUNT): | ||
h_C.fill(0.0) | ||
start_time = time() | ||
|
||
print "Skipping as this takes a long time to run!" | ||
#seq_mat_mul_sdot(Mdim, Ndim, Pdim, h_A, h_B, h_C) | ||
|
||
run_time = time() - start_time | ||
#results(Mdim, Ndim, Pdim, h_C, run_time) | ||
|
||
|
||
# Set up OpenCL | ||
context = cl.create_some_context() | ||
queue = cl.CommandQueue(context) | ||
|
||
# Reset host buffers - just to play it safe | ||
h_A = numpy.empty(sizeA).astype(numpy.float32) | ||
h_A.fill(AVAL) | ||
h_B = numpy.empty(sizeB).astype(numpy.float32) | ||
h_B.fill(BVAL) | ||
h_C = numpy.empty(sizeC).astype(numpy.float32) | ||
|
||
|
||
#-------------------------------------------------------------------------------- | ||
# OpenCL matrix multiplication ... Naive | ||
#-------------------------------------------------------------------------------- | ||
|
||
# Create OpenCL buffers | ||
d_a = cl.Buffer(context, cl.mem_flags.READ_ONLY | cl.mem_flags.COPY_HOST_PTR, hostbuf=h_A) | ||
d_b = cl.Buffer(context, cl.mem_flags.READ_ONLY | cl.mem_flags.COPY_HOST_PTR, hostbuf=h_B) | ||
d_c = cl.Buffer(context, cl.mem_flags.WRITE_ONLY, h_C.nbytes) | ||
|
||
kernelsource = open("../C_elem.cl").read() | ||
program = cl.Program(context, kernelsource).build() | ||
|
||
print "\n===== OpenCL, matrix mult, C(i,j) per work item, order", Ndim, "======\n" | ||
|
||
# Do the multiplication COUNT times | ||
for i in range(COUNT): | ||
h_C.fill(0.0) | ||
start_time = time() | ||
|
||
program.mmul(queue, (Ndim, Mdim), None, numpy.int32(Mdim), numpy.int32(Ndim), numpy.int32(Pdim), d_a, d_b, d_c) | ||
queue.finish() | ||
|
||
run_time = time() - start_time | ||
|
||
cl.enqueue_copy(queue, h_C, d_c) | ||
results(Mdim, Ndim, Pdim, h_C, run_time) | ||
|
||
#-------------------------------------------------------------------------------- | ||
# OpenCL matrix multiplication ... C row per work item | ||
#-------------------------------------------------------------------------------- | ||
|
||
kernelsource = open("../C_row.cl").read() | ||
program = cl.Program(context, kernelsource).build() | ||
print "\n===== OpenCL, matrix mult, C row per work item, order", Ndim, "======\n" | ||
# Do the multiplication COUNT times | ||
for i in range(COUNT): | ||
h_C.fill(0.0) | ||
start_time = time() | ||
|
||
program.mmul(queue, (Ndim,), (ORDER/16,), numpy.int32(Mdim), numpy.int32(Ndim), numpy.int32(Pdim), d_a, d_b, d_c) | ||
queue.finish() | ||
|
||
run_time = time() - start_time | ||
|
||
cl.enqueue_copy(queue, h_C, d_c) | ||
results(Mdim, Ndim, Pdim, h_C, run_time) | ||
|
||
#-------------------------------------------------------------------------------- | ||
# OpenCL matrix multiplication ... C row per work item, A row in pivate memory | ||
#-------------------------------------------------------------------------------- | ||
|
||
kernelsource = open("../C_row_priv.cl").read() | ||
program = cl.Program(context, kernelsource).build() | ||
print "\n===== OpenCL, matrix mult, C row, A row in priv mem, order", Ndim, "======\n" | ||
# Do the multiplication COUNT times | ||
for i in range(COUNT): | ||
h_C.fill(0.0) | ||
start_time = time() | ||
|
||
program.mmul(queue, (Ndim,), (ORDER/16,), numpy.int32(Mdim), numpy.int32(Ndim), numpy.int32(Pdim), d_a, d_b, d_c) | ||
queue.finish() | ||
|
||
run_time = time() - start_time | ||
|
||
cl.enqueue_copy(queue, h_C, d_c) | ||
results(Mdim, Ndim, Pdim, h_C, run_time) | ||
|
||
#-------------------------------------------------------------------------------- | ||
# OpenCL matrix multiplication ... C row per work item, A row pivate, B col local | ||
#-------------------------------------------------------------------------------- | ||
|
||
kernelsource = open("../C_row_priv_bloc.cl").read() | ||
program = cl.Program(context, kernelsource).build() | ||
print "\n===== OpenCL, mat mult, C row, priv A, B cols loc, order", Ndim, "======\n" | ||
# Do the multiplication COUNT times | ||
for i in range(COUNT): | ||
h_C.fill(0.0) | ||
start_time = time() | ||
|
||
localmem = cl.LocalMemory(numpy.dtype(numpy.float32).itemsize * Pdim) | ||
program.mmul(queue, (Ndim,), (ORDER/16,), numpy.int32(Mdim), numpy.int32(Ndim), numpy.int32(Pdim), | ||
d_a, d_b, d_c, localmem) | ||
queue.finish() | ||
|
||
run_time = time() - start_time | ||
|
||
cl.enqueue_copy(queue, h_C, d_c) | ||
results(Mdim, Ndim, Pdim, h_C, run_time) | ||
|
||
#-------------------------------------------------------------------------------- | ||
# OpenCL matrix multiplication ... A and B in block form in local memory | ||
#-------------------------------------------------------------------------------- | ||
|
||
kernelsource = open("../C_block_form.cl").read() | ||
program = cl.Program(context, kernelsource).build() | ||
print "\n===== OpenCL, A and B in block form in local memory, order", Ndim, "======\n" | ||
blockSize = 16 | ||
# Do the multiplication COUNT times | ||
for i in range(COUNT): | ||
h_C.fill(0.0) | ||
start_time = time() | ||
|
||
localmem1 = cl.LocalMemory(numpy.dtype(numpy.float32).itemsize * blockSize * blockSize) | ||
localmem2 = cl.LocalMemory(numpy.dtype(numpy.float32).itemsize * blockSize * blockSize) | ||
program.mmul(queue, (Ndim, Mdim), (blockSize, blockSize), | ||
numpy.int32(Mdim), numpy.int32(Ndim), numpy.int32(Pdim), | ||
d_a, d_b, d_c, localmem1, localmem2) | ||
queue.finish() | ||
|
||
run_time = time() - start_time | ||
|
||
cl.enqueue_copy(queue, h_C, d_c) | ||
results(Mdim, Ndim, Pdim, h_C, run_time) |