-
Notifications
You must be signed in to change notification settings - Fork 43
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
163 additions
and
97 deletions.
There are no files selected for viewing
260 changes: 163 additions & 97 deletions
260
.../src/test/java/org/hipparchus/optim/nonlinear/vector/constrained/ADMMQPOptimizerTest.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,97 +1,163 @@ | ||
/* | ||
* Licensed to the Hipparchus project under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The Hipparchus project licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* https://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
package org.hipparchus.optim.nonlinear.vector.constrained; | ||
|
||
import org.hipparchus.optim.nonlinear.scalar.ObjectiveFunction; | ||
import org.junit.Test; | ||
|
||
public class ADMMQPOptimizerTest extends AbstractConstrainedOptimizerTest { | ||
|
||
protected ConstraintOptimizer buildOptimizer() { | ||
return new ADMMQPOptimizer(); | ||
} | ||
|
||
@Test | ||
public void test1() { | ||
QuadraticFunction q = new QuadraticFunction(new double[][] { { 4.0, -2.0 }, { -2.0, 4.0 } }, | ||
new double[] { 6.0, 0.0 }, | ||
0.0); | ||
|
||
// y = 1 | ||
LinearEqualityConstraint eqc = new LinearEqualityConstraint(new double[][] { { 0.0, 1.0 } }, | ||
new double[] { 1.0 }); | ||
|
||
|
||
// x > 0, y > 0, x + y > 2 | ||
LinearInequalityConstraint ineqc = new LinearInequalityConstraint(new double[][] { { 1.0, 0.0 }, { 0.0, 1.0 }, { 1.0, 1.0 } }, | ||
new double[] { 0.0, 0.0, 2.0 }); | ||
|
||
|
||
doTestProblem(new double[] { 1, 1 }, 2.5e-5, | ||
new double[] { -6, 0, 0, 8 }, 2.6e-4, | ||
8, 2.0e-4, | ||
new ObjectiveFunction(q), | ||
null, | ||
eqc, ineqc); | ||
|
||
} | ||
|
||
@Test | ||
public void test2() { | ||
QuadraticFunction q = new QuadraticFunction(new double[][] { { 6.0, 2.0 }, { 2.0, 8.0 } }, | ||
new double[] { 5.0, 1.0 }, | ||
0.0); | ||
|
||
// constraint x + 2y = 1 | ||
LinearEqualityConstraint eqc = new LinearEqualityConstraint(new double[][] { { 1.0, 2.0 } }, | ||
new double[] { 1.0 }); | ||
|
||
// x > 0, y > 0 | ||
LinearInequalityConstraint ineqc = new LinearInequalityConstraint(new double[][] { { 1.0, 0.0 }, { 0.0, 1.0 } }, | ||
new double[] { 0.0, 0.0 }); | ||
|
||
|
||
doTestProblem(new double[] { 0, 0.5 }, 1.1e-5, | ||
new double[] { 2.5, 3.5, 0 }, 8.5e-6, | ||
1.5, 6.3e-5, | ||
new ObjectiveFunction(q), | ||
null, | ||
eqc, ineqc); | ||
|
||
} | ||
|
||
@Test | ||
public void testBounded() { | ||
QuadraticFunction q = new QuadraticFunction(new double[][] { { 1.0, 0.0 }, { 0, 1.0 } }, | ||
new double[] { -3.0, -1.0 }, | ||
5.0); | ||
|
||
// 0 < x < 2, 0 < y < 2 | ||
LinearBoundedConstraint ineqc = new LinearBoundedConstraint(new double[][] { { 1.0, 0.0 },{ 0.0, 1.0 }}, | ||
new double[] { 0.0,0.0 }, new double[] { 2.0,2.0 }); | ||
|
||
|
||
doTestProblem(new double[] { 2, 1 }, 4.6e-6, | ||
new double[] { 1, 0 }, 3.1e-5, | ||
0.5, 4.6e-6, | ||
new ObjectiveFunction(q), | ||
null, | ||
ineqc); | ||
|
||
} | ||
|
||
} | ||
/* | ||
* Licensed to the Hipparchus project under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The Hipparchus project licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* https://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
package org.hipparchus.optim.nonlinear.vector.constrained; | ||
|
||
import org.hipparchus.exception.LocalizedCoreFormats; | ||
import org.hipparchus.exception.MathIllegalArgumentException; | ||
import org.hipparchus.linear.MatrixUtils; | ||
import org.hipparchus.linear.RealMatrix; | ||
import org.hipparchus.linear.RealVector; | ||
import org.hipparchus.optim.nonlinear.scalar.ObjectiveFunction; | ||
import org.junit.Assert; | ||
import org.junit.Test; | ||
|
||
public class ADMMQPOptimizerTest extends AbstractConstrainedOptimizerTest { | ||
|
||
protected ConstraintOptimizer buildOptimizer() { | ||
return new ADMMQPOptimizer(); | ||
} | ||
|
||
@Test | ||
public void test1() { | ||
QuadraticFunction q = new QuadraticFunction(new double[][] { { 4.0, -2.0 }, { -2.0, 4.0 } }, | ||
new double[] { 6.0, 0.0 }, | ||
0.0); | ||
|
||
// y = 1 | ||
LinearEqualityConstraint eqc = new LinearEqualityConstraint(new double[][] { { 0.0, 1.0 } }, | ||
new double[] { 1.0 }); | ||
|
||
|
||
// x > 0, y > 0, x + y > 2 | ||
LinearInequalityConstraint ineqc = new LinearInequalityConstraint(new double[][] { { 1.0, 0.0 }, { 0.0, 1.0 }, { 1.0, 1.0 } }, | ||
new double[] { 0.0, 0.0, 2.0 }); | ||
|
||
|
||
doTestProblem(new double[] { 1, 1 }, 2.5e-5, | ||
new double[] { -6, 0, 0, 8 }, 2.6e-4, | ||
8, 2.0e-4, | ||
new ObjectiveFunction(q), | ||
null, | ||
eqc, ineqc); | ||
|
||
} | ||
|
||
@Test | ||
public void test2() { | ||
QuadraticFunction q = new QuadraticFunction(new double[][] { { 6.0, 2.0 }, { 2.0, 8.0 } }, | ||
new double[] { 5.0, 1.0 }, | ||
0.0); | ||
|
||
// constraint x + 2y = 1 | ||
LinearEqualityConstraint eqc = new LinearEqualityConstraint(new double[][] { { 1.0, 2.0 } }, | ||
new double[] { 1.0 }); | ||
|
||
// x > 0, y > 0 | ||
LinearInequalityConstraint ineqc = new LinearInequalityConstraint(new double[][] { { 1.0, 0.0 }, { 0.0, 1.0 } }, | ||
new double[] { 0.0, 0.0 }); | ||
|
||
|
||
doTestProblem(new double[] { 0, 0.5 }, 1.1e-5, | ||
new double[] { 2.5, 3.5, 0 }, 8.5e-6, | ||
1.5, 6.3e-5, | ||
new ObjectiveFunction(q), | ||
null, | ||
eqc, ineqc); | ||
|
||
} | ||
|
||
@Test | ||
public void testBounded() { | ||
QuadraticFunction q = new QuadraticFunction(new double[][] { { 1.0, 0.0 }, { 0, 1.0 } }, | ||
new double[] { -3.0, -1.0 }, | ||
5.0); | ||
|
||
// 0 < x < 2, 0 < y < 2 | ||
LinearBoundedConstraint ineqc = new LinearBoundedConstraint(new double[][] { { 1.0, 0.0 },{ 0.0, 1.0 }}, | ||
new double[] { 0.0,0.0 }, new double[] { 2.0,2.0 }); | ||
|
||
|
||
doTestProblem(new double[] { 2, 1 }, 4.6e-6, | ||
new double[] { 1, 0 }, 3.1e-5, | ||
0.5, 4.6e-6, | ||
new ObjectiveFunction(q), | ||
null, | ||
ineqc); | ||
|
||
} | ||
|
||
@Test | ||
public void testOptimizeWithoutScaling() { | ||
// GIVEN | ||
final ADMMQPOptimizer optimizer = createOptimizerOnSimpleProblem(false, false); | ||
|
||
// WHEN | ||
final LagrangeSolution solution = optimizer.optimize(); | ||
|
||
// THEN | ||
Assert.assertNotNull(optimizer.getConvergenceChecker()); | ||
Assert.assertTrue(optimizer.isConverged()); | ||
Assert.assertEquals(0., solution.getValue(), 0); | ||
} | ||
|
||
@Test | ||
public void testOptimizeWithPolish() { | ||
// GIVEN | ||
final ADMMQPOptimizer optimizer = createOptimizerOnSimpleProblem(true, true); | ||
|
||
// WHEN | ||
final LagrangeSolution solution = optimizer.optimize(); | ||
|
||
// THEN | ||
Assert.assertNotNull(optimizer.getConvergenceChecker()); | ||
Assert.assertTrue(optimizer.isConverged()); | ||
Assert.assertEquals(0., solution.getValue(), 0); | ||
} | ||
|
||
private ADMMQPOptimizer createOptimizerOnSimpleProblem(final boolean polishing, final boolean scaling) { | ||
final QuadraticFunction q = new QuadraticFunction(new double[][] { { 1.0, 0.0 }, { 0.0, 1.0 } }, | ||
new double[] { 0.0, 0.0 }, 0.0); | ||
final LinearEqualityConstraint eqc = new LinearEqualityConstraint(new double[][] { { 1.0, 1.0 } }, | ||
new double[] { 0.0 }); | ||
|
||
final ADMMQPOption option = new ADMMQPOption(); | ||
option.setPolishing(polishing); | ||
option.setScaling(scaling); | ||
|
||
final ADMMQPOptimizer optimizer = new ADMMQPOptimizer(); | ||
optimizer.parseOptimizationData(new ObjectiveFunction(q), eqc, option); | ||
return optimizer; | ||
} | ||
|
||
@Test | ||
public void testParseOptimizationDataException() { | ||
// GIVEN | ||
final ADMMQPOptimizer testSQPOptimizer = new ADMMQPOptimizer(); | ||
final EqualityConstraint equalityConstraint = new LinearEqualityConstraint(new double[1][1], new double[1]); | ||
final QuadraticFunction multivariateFunction = new QuadraticFunction(new double[1][1], new double[1], 0); | ||
final ObjectiveFunction objectiveFunction = new ObjectiveFunction(multivariateFunction); | ||
// WHEN | ||
try { | ||
testSQPOptimizer.parseOptimizationData(objectiveFunction, equalityConstraint); | ||
Assert.fail(); | ||
} catch (final MathIllegalArgumentException exception) { | ||
Assert.assertEquals("rank of constraints must be lesser than domain dimension, but 1 >= 1", | ||
exception.getMessage()); | ||
} | ||
} | ||
|
||
} |