Skip to content

Commit

Permalink
revert to other version of path_succ_finnat
Browse files Browse the repository at this point in the history
Signed-off-by: Ali Caglayan <[email protected]>
  • Loading branch information
Alizter committed Nov 17, 2024
1 parent 7d7e143 commit cdeb723
Showing 1 changed file with 6 additions and 6 deletions.
12 changes: 6 additions & 6 deletions theories/Spaces/Finite/FinNat.v
Original file line number Diff line number Diff line change
Expand Up @@ -15,10 +15,10 @@ Definition zero_finnat@{} (n : nat) : FinNat n.+1

Definition succ_finnat@{} {n : nat} (u : FinNat n) : FinNat n.+1
:= (u.1.+1; leq_succ u.2).
Definition path_succ_finnat@{} {n : nat} (u : FinNat n) (h : u.1.+1 < n.+1)
: succ_finnat u = (u.1.+1; h).
Proof.

Definition path_succ_finnat {n : nat} (x : nat) (h : x.+1 < n.+1)
: succ_finnat (x; leq_pred' h) = (x.+1; h).
Proof.
by apply path_sigma_hprop.
Defined.

Expand All @@ -40,7 +40,7 @@ Proof.
destruct x as [| x].
+ nrefine (transport (P n.+1) _ (z _)).
by apply path_sigma_hprop.
+ refine (transport (P n.+1) (path_succ_finnat (x; leq_pred' h) _) _).
+ refine (transport (P n.+1) (path_succ_finnat _ _) _).
apply s. apply IHn.
Defined.

Expand All @@ -61,7 +61,7 @@ Definition finnat_ind_beta_succ@{u} (P : forall n : nat, FinNat n -> Type@{u})
{n : nat} (u : FinNat n)
: finnat_ind P z s (succ_finnat u) = s n u (finnat_ind P z s u).
Proof.
destruct u as [u1 u2]; simpl.
destruct u as [u1 u2]; simpl; unfold path_succ_finnat.
destruct (path_ishprop u2 (leq_pred' (leq_succ u2))).
refine (transport2 _ (q:=idpath@{Set}) _ _).
rapply path_ishprop.
Expand Down

0 comments on commit cdeb723

Please sign in to comment.