PeMS04 and PeMS08 are provided by ASTGCN. Seattle Loop Detector Dataset is provided by Cui et al..
Our dataset files can be downloaded from Google Drive.
The Datasets files should be placed in the data
folder.
Requirements should be installed before any operation.
pip install -r requirements.txt
Run train.py
to train the model, run test.py
to do the test.
$ python train.py PeMS04
$ python test.py PeMS08
You should specify a dataset before trainning and testing.
$ python train.py --help
usage: train.py [-h] {PeMS04,PeMS08,Loop}
train.py: error: the following arguments are required: dataset
You can modify the settings and hyperparameters via commandline arguments, they must be placed after the dataset
argument.
$ python train.py PeMS04 --help
usage: train.py [-h] [--time_slot TIME_SLOT] [--P P] [--Q Q] [--N N] [--L L]
[--K K] [--d D] [--seed SEED] [--train_ratio TRAIN_RATIO]
[--val_ratio VAL_RATIO] [--test_ratio TEST_RATIO]
[--batch_size BATCH_SIZE] [--max_epoch MAX_EPOCH]
[--patience PATIENCE] [--learning_rate LEARNING_RATE]
[--decay_rate DECAY_RATE] [--traffic_file TRAFFIC_FILE]
[--SE_file SE_FILE] [--model_file MODEL_FILE]
[--log_file LOG_FILE] [--gpu_device GPU_DEVICE]
[--drop_rate DROP_RATE] [--masked_l1 MASKED_L1]
{PeMS08,PeMS04,Loop}
positional arguments:
{PeMS08,PeMS04,Loop} use a dataset
optional arguments:
-h, --help show this help message and exit
--time_slot TIME_SLOT
a time step is 5 mins
--P P history steps
--Q Q prediction steps
--N N number of Cross Att Blocks
--L L number of STAtt Blocks
--K K number of attention heads
--d D dims of each head attention outputs
--seed SEED seed of random utils
--train_ratio TRAIN_RATIO
training set [default : 0.7]
--val_ratio VAL_RATIO
validation set [default : 0.1]
--test_ratio TEST_RATIO
testing set [default : 0.2]
--batch_size BATCH_SIZE
batch size
--max_epoch MAX_EPOCH
epoch to run
--patience PATIENCE patience for early stop
--learning_rate LEARNING_RATE
initial learning rate
--decay_rate DECAY_RATE
decay rate
--traffic_file TRAFFIC_FILE
traffic file
--SE_file SE_FILE spatial emebdding file
--model_file MODEL_FILE
save the model to disk
--log_file LOG_FILE log file
--gpu_device GPU_DEVICE
train device
--drop_rate DROP_RATE
drop rate
--masked_l1 MASKED_L1
whether use masked l1 loss