Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add cli support for wxc gravity wave #380

Merged
merged 9 commits into from
Jan 27, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
85 changes: 85 additions & 0 deletions examples/confs/wxc-gravity-wave-ccc.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
# lightning.pytorch==2.1.1
seed_everything: 0
trainer:
accelerator: auto
strategy: auto
devices: auto
num_nodes: 1
precision: 16-mixed
logger:
class_path: TensorBoardLogger
init_args:
save_dir: <path>
name: fire_scars
callbacks:
- class_path: RichProgressBar
- class_path: LearningRateMonitor
init_args:
logging_interval: epoch
- class_path: EarlyStopping
init_args:
monitor: val/loss
patience: 40

max_epochs: 200
check_val_every_n_epoch: 1
log_every_n_steps: 50
enable_checkpointing: true
default_root_dir: <path>

# dataset available: https://huggingface.co/datasets/ibm-nasa-geospatial/hls_burn_scars
data:
class_path: terratorch.datamodules.era5.ERA5DataModule
init_args:
train_data_path: /dccstor/terratorch/users/rkie/gitco/terratorch
valid_data_path: /dccstor/terratorch/users/rkie/gitco/terratorch
file_glob_pattern: "wxc_input_u_v_t_p_output_theta_uw_vw_*.nc"

model:
class_path: WxCTask
init_args:
model_args:
in_channels: 1280
input_size_time: 1
n_lats_px: 64
n_lons_px: 128
patch_size_px: [2, 2]
mask_unit_size_px: [8, 16]
mask_ratio_inputs: 0.5
embed_dim: 2560
n_blocks_encoder: 12
n_blocks_decoder: 2
mlp_multiplier: 4
n_heads: 16
dropout: 0.0
drop_path: 0.05
parameter_dropout: 0.0
residual: none
masking_mode: both
decoder_shifting: False
positional_encoding: absolute
checkpoint_encoder: [3, 6, 9, 12, 15, 18, 21, 24]
checkpoint_decoder: [1, 3]
in_channels_static: 3
input_scalers_mu: torch.tensor([0] * 1280)
input_scalers_sigma: torch.tensor([1] * 1280)
input_scalers_epsilon: 0
static_input_scalers_mu: torch.tensor([0] * 3)
static_input_scalers_sigma: torch.tensor([1] * 3)
static_input_scalers_epsilon: 0
output_scalers: torch.tensor([0] * 1280)
backbone_weights: magnet-flux-uvtp122-epoch-99-loss-0.1022.pt
backbone: prithviwxc
aux_decoders: unetpincer
skip_connection: True
model_factory: WxCModelFactory
mode: eval
optimizer:
class_path: torch.optim.Adam
init_args:
lr: 1.5e-5
weight_decay: 0.05
lr_scheduler:
class_path: ReduceLROnPlateau
init_args:
monitor: val/loss
81 changes: 81 additions & 0 deletions examples/confs/wxc-gravity-wave.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
# lightning.pytorch==2.1.1
seed_everything: 0
trainer:
accelerator: auto
strategy: auto
devices: auto
num_nodes: 1
precision: 16-mixed
logger:
class_path: TensorBoardLogger
init_args:
save_dir: <path>
name: fire_scars
callbacks:
- class_path: RichProgressBar
- class_path: LearningRateMonitor
init_args:
logging_interval: epoch
- class_path: EarlyStopping
init_args:
monitor: val/loss
patience: 40

max_epochs: 200
check_val_every_n_epoch: 1
log_every_n_steps: 50
enable_checkpointing: true
default_root_dir: <path>

# dataset available: https://huggingface.co/datasets/ibm-nasa-geospatial/hls_burn_scars
data:
class_path: terratorch.datamodules.era5.ERA5DataModule

model:
class_path: WxCTask
init_args:
model_args:
in_channels: 1280
input_size_time: 1
n_lats_px: 64
n_lons_px: 128
patch_size_px: [2, 2]
mask_unit_size_px: [8, 16]
mask_ratio_inputs: 0.5
embed_dim: 2560
n_blocks_encoder: 12
n_blocks_decoder: 2
mlp_multiplier: 4
n_heads: 16
dropout: 0.0
drop_path: 0.05
parameter_dropout: 0.0
residual: none
masking_mode: both
decoder_shifting: False
positional_encoding: absolute
checkpoint_encoder: [3, 6, 9, 12, 15, 18, 21, 24]
checkpoint_decoder: [1, 3]
in_channels_static: 3
input_scalers_mu: torch.tensor([0] * 1280)
input_scalers_sigma: torch.tensor([1] * 1280)
input_scalers_epsilon: 0
static_input_scalers_mu: torch.tensor([0] * 3)
static_input_scalers_sigma: torch.tensor([1] * 3)
static_input_scalers_epsilon: 0
output_scalers: torch.tensor([0] * 1280)
backbone_weights: magnet-flux-uvtp122-epoch-99-loss-0.1022.pt
backbone: prithviwxc
aux_decoders: unetpincer
skip_connection: True
model_factory: WxCModelFactory
mode: eval
optimizer:
class_path: torch.optim.Adam
init_args:
lr: 1.5e-5
weight_decay: 0.05
lr_scheduler:
class_path: ReduceLROnPlateau
init_args:
monitor: val/loss
16 changes: 12 additions & 4 deletions terratorch/cli_tools.py
Joao-L-S-Almeida marked this conversation as resolved.
Show resolved Hide resolved
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,9 @@
import rasterio
import torch

import random
import string

# Allows classes to be referenced using only the class name
import torchgeo.datamodules
import yaml
Expand Down Expand Up @@ -153,10 +156,15 @@ def write_on_batch_end(self, trainer, pl_module, prediction, batch_indices, batc
if not os.path.exists(output_dir):
os.makedirs(output_dir, exist_ok=True)

pred_batch, filename_batch = prediction

for prediction, file_name in zip(torch.unbind(pred_batch, dim=0), filename_batch, strict=False):
save_prediction(prediction, file_name, output_dir, dtype=trainer.out_dtype)
if isinstance(prediction, torch.Tensor):
filename_batch = ''.join(random.choices(string.ascii_letters + string.digits, k=8))
torch.save(prediction, os.path.join(output_dir, f"{filename_batch}.pt"))
elif isinstance(prediction, tuple):
pred_batch, filename_batch = prediction
for prediction, file_name in zip(torch.unbind(pred_batch, dim=0), filename_batch, strict=False):
save_prediction(prediction, file_name, output_dir, dtype=trainer.out_dtype)
else:
raise TypeError(f"Unknown type for prediction{type(prediction)}")

def write_on_epoch_end(self, trainer, pl_module, predictions, batch_indices): # noqa: ARG002
# this will create N (num processes) files in `output_dir` each containing
Expand Down
1 change: 1 addition & 0 deletions terratorch/datamodules/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@
from terratorch.datamodules.multi_temporal_crop_classification import MultiTemporalCropClassificationDataModule
from terratorch.datamodules.open_sentinel_map import OpenSentinelMapDataModule
from terratorch.datamodules.pastis import PASTISDataModule
from terratorch.datamodules.era5 import ERA5DataModule

try:
wxc_present = True
Expand Down
1 change: 1 addition & 0 deletions terratorch/models/wxc_model_factory.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,6 +61,7 @@ def build_model(
raise

#remove parameters not meant for the backbone but for other parts of the model
logger.trace(kwargs)
skip_connection = kwargs.pop('skip_connection')

backbone = prithviwxc.PrithviWxC(**kwargs)
Expand Down
5 changes: 4 additions & 1 deletion terratorch/tasks/__init__.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
import logging
from terratorch.tasks.classification_tasks import ClassificationTask
from terratorch.tasks.regression_tasks import PixelwiseRegressionTask
from terratorch.tasks.segmentation_tasks import SemanticSegmentationTask
Expand All @@ -6,6 +7,8 @@
try:
wxc_present = True
from terratorch.tasks.wxc_downscaling_task import WxCDownscalingTask
from terratorch.tasks.wxc_task import WxCTask
logging.getLogger('terratorch').debug('wxc_downscaling found.')
except ImportError as e:
import logging
logging.getLogger('terratorch').debug('wxc_downscaling not installed')
Expand All @@ -21,4 +24,4 @@
)

if wxc_present:
__all__.__add__(("WxCDownscalingTask", ))
__all__.__add__(("WxCDownscalingTask", "WxCTask",))
12 changes: 7 additions & 5 deletions terratorch/tasks/wxc_task.py
Original file line number Diff line number Diff line change
@@ -1,17 +1,19 @@


from torchgeo.trainers import BaseTask
import torch.nn as nn
import torch
import logging
logger = logging.getLogger(__name__)

from terratorch.registry import MODEL_FACTORY_REGISTRY

class WxCTask(BaseTask):
def __init__(self, model_factory, model_args: dict, mode, learning_rate=0.1):
def __init__(self, model_factory, model_args: dict, mode:str='train', learning_rate=0.1):
if mode not in ['train', 'eval']:
raise ValueError(f'mode {mode} is not supported. (train, eval)')
self.model_args = model_args
self.model_factory = model_factory

self.model_factory = MODEL_FACTORY_REGISTRY.build(model_factory)

self.learning_rate = learning_rate
super().__init__()

Expand All @@ -34,4 +36,4 @@ def training_step(self, batch, batch_idx):

def train_dataloader(self):
return DataLoader(self.dataset, batch_size=self.batch_size, shuffle=True)


Loading