- This process will convert CudaFloatTensor smpl parameters to numpy format.
- Download and unzip
smpl_gt.zip
andsmplx_gt.zip
from here. - Run
python tensor_to_numpy_parameter.py --dataset_path $PATH1
. $PATH1 denotes AGORA dataset path.
- This code will dump GT 2D/3D joints and 3D vertices of SMPL and SMPL-X in $PATH1. Also, it will generate
AGORA_train.json
andAGORA_validation.json
in $PATH1. - Download and unzip
train_SMPL.zip
,train_SMPLX.zip
,validation_SMPL.zip
, andvalidation_SMPLX.zip
from here. - Run
python agora2coco.py --dataset_path $PATH1 --human_model_path $PATH2
. $PATH1 denotes AGORA dataset path. $PATH2 denotes human model layer path.
- This code will prepare 1280x720 image files.
- Download and unzip 1280x720 image files.
- Then, make
1280x720
folder in AGORA dataset path. - For the $i$th zip file of training set, make
train_$i$
folder and move all image files to that folder. For example, maketrain_0
folder at AGORA dataset path and move all image files fromtrain_images_1280x720_0.zip
to that folder. - For the images of validation and test sets, make
validation
andtest
folders and move all images files to corresponding folders.
- This code will prepare 3840x2160 image files.
- Do the same process of 1280x720 image files
- As the image resolution is too high, you need to crop and resize humans to prevent the dataloader from being stuck.
- To this end, run
python affine_transom.py --dataset_path $PATH1 --out_height 512 --out_width 384
. $PATH1 denotes AGORA dataset path.
- Download human detection results on test set from here
- The human detection results are from YOLO v5.
${PATH1}
|-- AGORA_train.json
|-- AGORA_validation.json
|-- AGORA_test_bbox.json
|-- gt_joints_2d
|-- |-- smpl
|-- |-- smplx
|-- gt_joints_3d
|-- |-- smpl
|-- |-- smplx
|-- gt_verts
|-- |-- smpl
|-- |-- smplx
|-- 1280x720
| |-- train_0
| |-- train_1
| |-- train_2
| |-- train_3
| |-- train_4
| |-- train_5
| |-- train_6
| |-- train_7
| |-- train_8
| |-- train_9
| |-- validation
| |-- test
|-- 3840x2160
| |-- train_0
| |-- train_0_crop
| |-- train_1
| |-- train_1_crop
| |-- train_2
| |-- train_2_crop
| |-- train_3
| |-- train_3_crop
| |-- train_4
| |-- train_4_crop
| |-- train_5
| |-- train_5_crop
| |-- train_6
| |-- train_6_crop
| |-- train_7
| |-- train_7_crop
| |-- train_8
| |-- train_8_crop
| |-- train_9
| |-- train_9_crop
| |-- validation
| |-- validation_crop
| |-- test
| |-- test_crop