Thanks https://github.com/timy90022/One-Shot-Object-Detection and https://github.com/jwyang/faster-rcnn.pytorch for providing the code which is used in this repository.
- Setup Faster R-CNN using instructions given in https://github.com/jwyang/faster-rcnn.pytorch
- Download pre-trained weights for resnet-50 for image feature extractor and follow instructions given in image_model
- Download pretrained weights for resnet-50 for sketch feature extractor and metadata: sketch_model
- Store the downloaded data in ../data folder
- Download the models from here
Download quickdraw dataset here and create the pickle file [processed_quick_draw_paths_common_classes.pkl] by running following commands:
python read_store_quick_draw.py
python get_train_test_quick_draw.py
python get_common_classes.py
- Enter default
--sketch-path
and--sketch_class_2_label paths
in train and test files - To train - Run:
python train_val_sketch_oneshot.py --dataset coco --net res50 --cuda --seen 7 --nw 10 --bs 10
- To test - Run:
python test_net_oneshot.py --dataset coco --net res50 --cuda --seen 7 --s <session> --checkepoch <epoch> --p <checkpoint>