Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Week 2 - AlexNet #1

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions Week 2 - AlexNet/Alexnet/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
AlexNet

Download weights to the same folder(Alexnet) from the link given below.

Weights: [here](http://www.cs.toronto.edu/~guerzhoy/tf_alexnet/bvlc_alexnet.npy)
164 changes: 164 additions & 0 deletions Week 2 - AlexNet/Alexnet/alex.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,164 @@


from numpy import *
import os
import numpy as np

import time
from scipy.misc import imread
from scipy.misc import imresize
import matplotlib.image as mpimg
from scipy.ndimage import filters
import urllib
from numpy import random


import tensorflow as tf

from caffe_classes import class_names

train_x = zeros((1, 227,227,3)).astype(float32)
train_y = zeros((1, 1000))
xdim = train_x.shape[1:]
ydim = train_y.shape[1]

#Read Image, and change to BGR


im1 = (imread("laska.png")[:,:,:3]).astype(float32)
im1 = im1 - mean(im1)
im1[:, :, 0], im1[:, :, 2] = im1[:, :, 2], im1[:, :, 0]

im2 = (imread("poodle.png")[:,:,:3]).astype(float32)
im2[:, :, 0], im2[:, :, 2] = im2[:, :, 2], im2[:, :, 0]


net_data = load(open("bvlc_alexnet.npy", "rb"), encoding="latin1").item()

def conv(input, kernel, biases, k_h, k_w, c_o, s_h, s_w, padding="VALID", group=1):

c_i = input.get_shape()[-1]
assert c_i%group==0
assert c_o%group==0
convolve = lambda i, k: tf.nn.conv2d(i, k, [1, s_h, s_w, 1], padding=padding)


if group==1:
conv = convolve(input, kernel)
else:
input_groups = tf.split(input, group, 3) #tf.split(3, group, input)
kernel_groups = tf.split(kernel, group, 3) #tf.split(3, group, kernel)
output_groups = [convolve(i, k) for i,k in zip(input_groups, kernel_groups)]
conv = tf.concat(output_groups, 3) #tf.concat(3, output_groups)
return tf.reshape(tf.nn.bias_add(conv, biases), [-1]+conv.get_shape().as_list()[1:])



x = tf.placeholder(tf.float32, (None,) + xdim)


#conv1
k_h = 11; k_w = 11; c_o = 96; s_h = 4; s_w = 4
conv1W = tf.Variable(net_data["conv1"][0])
conv1b = tf.Variable(net_data["conv1"][1])
conv1_in = conv(x, conv1W, conv1b, k_h, k_w, c_o, s_h, s_w, padding="SAME", group=1)
conv1 = tf.nn.relu(conv1_in)

#lrn1
radius = 2; alpha = 2e-05; beta = 0.75; bias = 1.0
lrn1 = tf.nn.local_response_normalization(conv1,
depth_radius=radius,
alpha=alpha,
beta=beta,
bias=bias)

#maxpool1
k_h = 3; k_w = 3; s_h = 2; s_w = 2; padding = 'VALID'
maxpool1 = tf.nn.max_pool(lrn1, ksize=[1, k_h, k_w, 1], strides=[1, s_h, s_w, 1], padding=padding)


#conv2
k_h = 5; k_w = 5; c_o = 256; s_h = 1; s_w = 1; group = 2
conv2W = tf.Variable(net_data["conv2"][0])
conv2b = tf.Variable(net_data["conv2"][1])
conv2_in = conv(maxpool1, conv2W, conv2b, k_h, k_w, c_o, s_h, s_w, padding="SAME", group=group)
conv2 = tf.nn.relu(conv2_in)


#lrn2
radius = 2; alpha = 2e-05; beta = 0.75; bias = 1.0
lrn2 = tf.nn.local_response_normalization(conv2,
depth_radius=radius,
alpha=alpha,
beta=beta,
bias=bias)

#maxpool2
k_h = 3; k_w = 3; s_h = 2; s_w = 2; padding = 'VALID'
maxpool2 = tf.nn.max_pool(lrn2, ksize=[1, k_h, k_w, 1], strides=[1, s_h, s_w, 1], padding=padding)

#conv3
k_h = 3; k_w = 3; c_o = 384; s_h = 1; s_w = 1; group = 1
conv3W = tf.Variable(net_data["conv3"][0])
conv3b = tf.Variable(net_data["conv3"][1])
conv3_in = conv(maxpool2, conv3W, conv3b, k_h, k_w, c_o, s_h, s_w, padding="SAME", group=group)
conv3 = tf.nn.relu(conv3_in)

#conv4
#conv(3, 3, 384, 1, 1, group=2, name='conv4')
k_h = 3; k_w = 3; c_o = 384; s_h = 1; s_w = 1; group = 2
conv4W = tf.Variable(net_data["conv4"][0])
conv4b = tf.Variable(net_data["conv4"][1])
conv4_in = conv(conv3, conv4W, conv4b, k_h, k_w, c_o, s_h, s_w, padding="SAME", group=group)
conv4 = tf.nn.relu(conv4_in)


#conv5
k_h = 3; k_w = 3; c_o = 256; s_h = 1; s_w = 1; group = 2
conv5W = tf.Variable(net_data["conv5"][0])
conv5b = tf.Variable(net_data["conv5"][1])
conv5_in = conv(conv4, conv5W, conv5b, k_h, k_w, c_o, s_h, s_w, padding="SAME", group=group)
conv5 = tf.nn.relu(conv5_in)

#maxpool5
k_h = 3; k_w = 3; s_h = 2; s_w = 2; padding = 'VALID'
maxpool5 = tf.nn.max_pool(conv5, ksize=[1, k_h, k_w, 1], strides=[1, s_h, s_w, 1], padding=padding)

#fc6
fc6W = tf.Variable(net_data["fc6"][0])
fc6b = tf.Variable(net_data["fc6"][1])
fc6 = tf.nn.relu_layer(tf.reshape(maxpool5, [-1, int(prod(maxpool5.get_shape()[1:]))]), fc6W, fc6b)

#fc7
fc7W = tf.Variable(net_data["fc7"][0])
fc7b = tf.Variable(net_data["fc7"][1])
fc7 = tf.nn.relu_layer(fc6, fc7W, fc7b)

#fc8
fc8W = tf.Variable(net_data["fc8"][0])
fc8b = tf.Variable(net_data["fc8"][1])
fc8 = tf.nn.xw_plus_b(fc7, fc8W, fc8b)


#prob
#softmax(name='prob'))
prob = tf.nn.softmax(fc8)

init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)

output = sess.run(prob, feed_dict = {x:[im1,im2]})

#Output:


for input_im_ind in range(output.shape[0]):
inds = argsort(output)[input_im_ind,:]
print('\n')
print("#@#@#@#@#@#@#@#@#")
print('\n')
print("Image", input_im_ind)
for i in range(5):
print(class_names[inds[-1-i]], output[input_im_ind, inds[-1-i]])

Loading