ProbShakemap
is a Python toolbox that propagates source uncertainty from an ensemble of earthquake scenarios to ground motion predictions at a grid of Points of Interest (POIs). It accounts for model uncertainty by accommodating multiple Ground Motion Models (GMMs) and their inherent variability. The output consists of a set of products aiding the user to explore and visualize the predictive distribution of ground motion at each target point.
The package includes SeisEnsMan
, a tool for generating event-compatible source scenario ensembles. Originally designed for Urgent Computing applications, ProbShakemap
is versatile enough to be adapted for other uses, such as scenario-based seismic hazard assessments.
usage: ProbShakemap.py [-h] [--imt {PGA,PGV,SA0.3),SA(1.0),SA(3.0}] [--tool {StationRecords,Save_Output,QueryHDF5}] [--prob_tool {GetStatistics,GetDistributions,EnsemblePlot} [{GetStatistics,GetDistributions,EnsemblePlot} ...]] [--numGMPEsRealizations NUMGMPESREALIZATIONS] [--num_processes NUM_PROCESSES] [--imt_min IMT_MIN] [--imt_max IMT_MAX] [--station_file STATION_FILE] [--scenario SCENARIO] [--pois_file POIS_FILE] [--deg_round DEG_ROUND] [--pois_subset] [--n_pois N_POIS] [--max_distance MAX_DISTANCE] [--pois_selection_method {random,azimuth_uniform}] [--reuse_pois_subset] [--vector_npy] [--fileScenariosWeights FILESCENARIOSWEIGHTS] ProbShakemap Toolbox optional arguments: -h, --help show this help message and exit input params: --imt {PGA,PGV,SA(0.3),SA(1.0),SA(3.0)} Intensity measure type (IMT) --tool {StationRecords,Save_Output,QueryHDF5} Tool(s) to use --prob_tool {GetStatistics,GetDistributions,EnsemblePlot} [{GetStatistics,GetDistributions,EnsemblePlot} ...] ProbShakemap Tool(s) to use --numGMPEsRealizations NUMGMPESREALIZATIONS Total number of GMPEs random samples --num_processes NUM_PROCESSES Number of CPU cores for code parallelization --imt_min IMT_MIN Minimum value for the selected IMT (for plot only) --imt_max IMT_MAX Maximum value for the selected IMT (for plot only) --station_file STATION_FILE Station file (.json, Shakemap-formatted) --scenario SCENARIO Scenario number --pois_file POIS_FILE Filename with latitude and longitude of POIs --deg_round DEG_ROUND Rounding precision for latitude and longitude --pois_subset Extract a subset of POIs --n_pois N_POIS Number of POIs in the subset --max_distance MAX_DISTANCE Max distance from epicenter of POIs in the subset --pois_selection_method {random,azimuth_uniform} Selection method for the POIs of the subset --reuse_pois_subset Reuse the subset of POIs already extracted in POIs.txt --vector_npy Store ground motion distributions at all POIs (vector.npy) --fileScenariosWeights FILESCENARIOSWEIGHTS File with scenarios weights
To install ProbShakemap
, clone the ProbShakemap
repository to your local machine:
git clone https://github.com/INGV/ProbShakemap.git
Then, create and activate the probshakemap
conda environment:
conda env create -f probshakemap_environment.yml -n probshakemap
conda activate probshakemap
The repository includes example input files (INPUT_FILES
) and output (OUTPUT_REPO
) from the Mw 6.5, 2016 October 30, Norcia Earthquake.
SeisEnsMan
requires a separate virtual environment. To set it up, follow these steps:
python -m venv SeisEnsMan
On macOS and Linux:
source [path_to]SeisEnsMan/bin/activate
On Windows:
[path_to]SeisEnsMan\Scripts\activate
Navigate to the SeisEnsManV2
folder and use the provided requirements.txt
to install the necessary libraries:
python3 -m pip install -r requirements.txt
To get started with ProbShakemap
, make sure to provide all required input files in the folder INPUT_FILES
:
input_file.txt
This file (do not rename) contains the necessary inputs for OpenQuake
, including:
- TectonicRegionType: as defined in OpenQuake tectonic regionalisation.
- Magnitude_Scaling_Relationship: as required from openquake.hazardlib.scalerel.
- Rupture_aratio: rupture aspect ratio as required from openquake.hazardlib.geo.surface.PlanarSurface.from_hypocenter
- ID_Event: Event ID, pointing to the corresponding event folder in the
events
directory.- Vs30file: GMT .grd Vs30 file; if not provided, set it to None. Default Vs30 value (760 m/s) will be used instead.
- CorrelationModel: as required from openquake.hazardlib.correlation.
- CrosscorrModel: as required from openquake.hazardlib.cross_orrelation.
- vs30_clustering:
True
value means that Vs30 values are expected to show clustering (as required from openquake.hazardlib.correlation).- truncation_level: number of standard deviations for truncation of the cross-correlation model distribution (as required from openquake.hazardlib.cross_correlation). Note that the truncation feature is lost if you use correlation (see OpenQuake documentation). This parameter is only accounted for when 'NoCrossCorrelation' is selected by the user.
- seed: Random seed to ensure reproducibility in sampling from the GMMs.
POIs file
A file with two space-separated columns: LAT and LON of the POIs.
ENSEMBLE
This folder must contain the ensemble of source scenarios for the current event. Scenarios can be loaded by the user or automatically generated by SeisEnsMan
.
events
This folder should contain a subfolder named with the current event ID, which needs to include:
event.xml
: contains event magnitude and time, allowingSeisEnsMan
to download the event's QUAKEML file and generate an ensemble of compatible earthquake source scenarios.gmpes.conf
: configuration file for GMMs and their relative weights, which the user must input undergmpe_sets
. GMMs available in OpenQuake are listed undergmpe_modules
and can be updated by the user.
vs30
(Optional)
Place the Vs30 .grd file here. An example file, global_italy_vs30_clobber.grd
(Michelini et al., 2020), is available at this link.
stationlist.json
(Optional)
This file should contain ground shaking records from a set of stations and be placed in the event's subfolder. The file should be formatted like USGS Shakemap
files (see the example in INPUT_FILES/events/8863681
).
Generate the scenarios ensemble with SeisEnsMan
First, create a subfolder under events
named with the event ID. In this folder, populate the event.xml
file with the event's magnitude and time. This information will be used by SeisEnsMan
to download the event's QUAKEML file, which is required to generate the ensemble of event-compatible scenarios.
Next, activate the SeisEnsMan
environment and navigate to the SeisEnsManV2
directory. Run the following command, adjusting the --nb_scen
parameter to specify the number of scenarios in the ensemble. The --angles
parameter is optional, and includes the strike, dip, and rake of the inverted fault model in the plot:
./line_call.sh
Once the scenarios are generated, SeisEnsMan
will: 1) copy the ensemble of scenarios to the INPUT_FILES/ENSEMBLE
folder, making them ready for ProbShakemap
; 2) move any previous files to the BACKUP
folder; 3) copy the event_stat.json
and parameters_histo_map_99999999.pdf
files to the event subfolder.
Before running ProbShakemap
, make sure to deactivate the SeisEnsMan
environment:
deactivate
Run ProbShakemap
Activate probshakemap
conda environment:
conda activate probshakemap
Use any of the ProbShakemap
utilities to explore and visualize the predictive distribution of ground motion at POIs.
ProbShakemap
comes with three utility tools - StationRecords
, Save_Output
, QueryHDF5
- and three 'prob tools' - GetStatistics
, GetDistributions
, EnsemblePlot
.
TOOL: StationRecords
Plot data from station file stationlist.json
, if provided.
python ProbShakemap.py --imt PGA --tool StationRecords --imt_min 0.01 --imt_max 1 --station_file stationlist.json
OUTPUT
Data_stationfile_{imt}.pdf
: Plot data from .json station file for the selected IMT (PGA in the example).
TOOL: Save_Output
Run the probabilistic analysis and save the output to a .HDF5 file (can be large!) with the following hierarchical structure.
scenario --> POI --> GMPEs realizations
python ProbShakemap.py --imt PGA --tool Save_Output --num_processes 8 --pois_file grid.txt --numGMPEsRealizations 10
OUTPUT
SIZE_{num_scenarios}_ENSEMBLE_{IMT}.hdf5
TOOL: QueryHDF5
Navigate and query the .HDF5 file.
python ProbShakemap.py --tool QueryHDF5 --imt PGA --scenario 10 --pois_file grid.txt
OUTPUT
GMF_info.txt
: Print the ground motion fields for the selected scenario at the POIs listed in grid.txt
.
Preview of an example output file:
GMF realizations at Site_LAT:43.2846_LON:12.7778 for Scenario_10: [0.17520797, 0.21844997, 0.093965515, 0.27266037, 0.079073295, 0.09725358, 0.08347481, 0.06693749, 0.005907976, 0.060873847] GMF realizations at Site_LAT:43.1846_LON:12.8778 for Scenario_10: [0.100996606, 0.35003924, 0.24363522, 0.19941418, 0.15757227, 0.1009447, 0.19146584, 0.06460667, 0.03146108, 0.097111605] GMF realizations at Site_LAT:43.0846_LON:13.4778 for Scenario_10: [0.18333985, 0.11954803, 0.2914887, 0.050770156, 0.07628956, 0.17871241, 0.10297835, 0.15162756, 0.020328628, 0.04087482]
PROB_TOOLS
TOOL: GetStatistics
Calculate, save and plot the statistics of the ground motion predictive distributions at all POIs.
python ProbShakemap.py --imt PGA --prob_tool GetStatistics --num_processes 8 --pois_file grid.txt --numGMPEsRealizations 10 --imt_min 0.001 --imt_max 1
OUTPUT
- npy files with the statistics (saved in the
npyFiles
folder) - map view of the statistics in
vector_stat.npy
(saved in theSTATISTICS
folder)
Output saved in the npyFiles
folder:
vector_stat.npy
: dictionary of statistics computed for the ground motion distributions at all POIs: 'Mean', 'Median','Percentile 10','Percentile 20','Percentile 80','Percentile 90','Percentile 5','Percentile 95','Percentile 2.5','Percentile 97.5';- (OPTIONAL, with command
--vector_npy
)vector.npy
: a 2D array that stores the ground-motion distributions at all POIs. The array has dimensions (num_pois
,num_GMPEsRealizations
*num_scenarios
), wherenum_GMPEsRealizations
represents the number of realizations per scenario, andnum_scenarios
is the total number of scenarios in the ensemble.
TOOL: GetDistributions
Plot the cumulative distribution of the predicted ground-motion values and main statistics at a specific POI together with the ground-motion value recorded at the closest station (or at a POI coincident with the station, if available).
Note: requires stationlist.json
file.
python ProbShakemap.py --imt PGA --prob_tool GetDistributions --num_processes 8 --pois_file grid.txt --numGMPEsRealizations 10 --imt_min 0.001 --imt_max 10 --station_file stationlist.json
OUTPUT
POIs_Map.pdf
: Spatial map of the POIsDistr_POI-{POI_idx}.pdf
: Plot of Datum-Ensemble comparison at a given POI
TOOL: EnsemblePlot
Plot and summarize the key statistical features of the distribution of predicted ground-motion values at the POIs.
python ProbShakemap.py --imt PGA --prob_tool EnsemblePlot --num_processes 8 --pois_file grid.txt --numGMPEsRealizations 10
OUTPUT
POIs_Map.pdf
: Spatial map of the POIsEnsemble_Spread_Plot_{imt}.pdf
: Boxplot
POIs SUBSET OPTION
When using the tools QueryHDF5
, GetStatistics
, GetDistributions
and EnsemblePlot
, you can require to extract a subset of POIs within a maximum distance from the event epicenter following one of the following spatial distributions: random and azimuthally uniform. This changes the command line to:
python ProbShakemap.py [...] --pois_subset --n_pois 12 --max_distance 50 --pois_selection_method azimuth_uniform
If azimuthally uniform is selected, POIs are chosen within a ring in the range max_distance +- max_distance/10
.
MULTIPLE TOOLS AT THE SAME TIME
ProbShakemap
can handle multiple tools at the same time. Be aware that, in this case, the same settings will apply (ie,--imt_min
, --imt_max
, --pois_subset
etc.).
python ProbShakemap.py --imt PGA --prob_tool GetDistributions EnsemblePlot --num_processes 8 --pois_file grid.txt --numGMPEsRealizations 10 --imt_min 0.001 --imt_max 10 --station_file stationlist.json --pois_subset --n_pois 12 --max_distance 50 --pois_selection_method azimuth_uniform
HPC
ProbShakemap
can be executed on a HPC cluster. IMPORTANT: the number set at --ntasks-per-node
must coincide with num_processes
.
If you need support write to [email protected].
Jacopo Selva coded the GetStatistics
tool; Louise Cordrie authored the SeisEnsMan
tool and tested ProbShakemap
on the INGV-Bologna ADA cluster.
I thank Valentino Lauciani for testing and developing the INGV Shakemap Docker and Licia Faenza for testing ProbShakemap. I also thank Michele Proietto (@https://github.com/miproietto) for assisting us in building the Docker image on the HPC cluster using Singularity.
If you use ProbShakemap
in your research, please cite using the following citation:
@article{stallone2025probshakemap,
title={ProbShakemap: A Python toolbox propagating source uncertainty to ground motion prediction for urgent computing applications},
author={Stallone, Angela and Selva, Jacopo and Cordrie, Louise and Faenza, Licia and Michelini, Alberto and Lauciani, Valentino},
journal={Computers \& Geosciences},
volume={195},
pages={105748},
year={2025},
publisher={Elsevier}
}